资源描述:
《南邮 数学实验.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一次练习题1.求解下列各题:1)>>limit((1834*x-sin(1834*x))/(x^3))ans=3084380852/32)>>diff(exp(x)*cos(1834*x/1000.0),10)ans=-426276065704904857519435573449/976562500000000000000000000*exp(x)*cos(917/500*x)+296986972130617301707171403/195312500000000000000000*exp(x)*sin(917/500*x)3)int(x^4/(1834^2+4*x^2)
2、,x)ans=1/12*x^3-840889/4*x+771095213/4*atan(1/917*x)4)将在展开(最高次幂为8).>>taylor(sqrt(1834/1000.0+x),9,x)ans=1/50*4585^(1/2)+5/917*4585^(1/2)*x-625/840889*4585^(1/2)*x^2+156250/771095213*4585^(1/2)*x^3-48828125/707094310321*4585^(1/2)*x^4+2441406250/92629354652051*4585^(1/2)*x^5-915527343750/84
3、941118215930767*4585^(1/2)*x^6+2517700195312500/545237037828059593373*4585^(1/2)*x^7-1022815704345703125/499982363688330647123041*4585^(1/2)*x^82.求矩阵的逆矩阵及特征值和特征向量。逆矩阵:>>A=[-2,1,1;0,2,0;-4,1,1834];inv(A)ans=-0.50050.25010.000300.50000-0.00110.00030.0005特征值:>>A=[-2,1,1;0,2,0;-4,1,1834];eig(A
4、)ans=1.0e+003*-0.00201.83400.0020特征向量:>>A=[-2,1,1;0,2,0;-4,1,1834];[P,D]=eig(A)P=-1.0000-0.00050.2425000.9701-0.0022-1.00000.0000D=1.0e+003*-0.00200001.83400000.00203.已知分别在下列条件下画出的图形:,分别为(在同一坐标系上作图);>>x=-2:1/50:2;y1=1/(sqrt(2*pi)*1834/600)*exp(-x.^2/(2*(1834/600)^2));y2=1/sqrt(2*pi)*1834/6
5、00*exp(-(x+1).^2/(2*(1834/600)^2));y3=1/sqrt(2*pi)*1834/600*exp(-(x-1).^2/(2*(1834/600)^2));plot(x,y1,x,y2,x,y3)4.画(1)>>t=0:pi/1000:20;u=0:pi/10000:2;x=u.*sin(t);y=u.*cos(t);z=100.*t/1834;plot3(x,y,z)(2)>>ezmesh('sin(1834*x*y)',[0,3],[0,3])(3)>>[t,u]=meshgrid(0:.01*pi:2*pi,0:.01*pi:2*pi);x
6、=sin(t).*(1834./100+cos(u));y=cos(t).*(1834./100+cos(u));z=sin(u);surf(x,y,z)5.对于方程,先画出左边的函数在合适的区间上的图形,借助于软件中的方程求根的命令求出所有的实根,找出函数的单调区间,结合高等数学的知识说明函数为什么在这些区间上是单调的,以及该方程确实只有你求出的这些实根。最后写出你做此题的体会.>>subplot(2,1,1);ezplot('x^5-1834/200*x-.1');subplot(2,1,2);ezplot('x^5-1834/200*x-.1');axis([-44-
7、.1.1]);solve('x^5-1834/200*x-.1=0')ans=-1.7379128266700894611391209979802-.10893246204072582693798581490422e-1.27232448901993127689441860269764e-2-1.7406575085305563272476413157894*i.27232448901993127689441860269764e-2+1.7406575085305563272476413157894*i1.7433