欢迎来到天天文库
浏览记录
ID:52978880
大小:1.32 MB
页数:45页
时间:2020-04-07
《2019秋七年级数学上册 第四章 几何图形初步小结与复习教学课件(新版)新人教版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、小结与复习第四章图形初步认识要点梳理考点讲练课堂小结课后作业要点梳理一、几何图形1.立体图形与平面图形(1)立体图形的各部分不都在同一平面内,如:(2)平面图形的各部分都在同一平面内,如:2.从不同方向看立体图形3.立体图形的展开图正方体圆柱三棱柱圆锥4.点、线、面、体之间的联系(1)体是由面围成,面与面相交成线,线与线相交成点;(2)点动成线、线动成面、面动成体.二、直线、射线、线段1.有关直线的基本事实经过两点有一条直线,并且只有一条直线.2.直线、射线、线段的区别类型线段射线直线端点个数2个不能延伸延伸性能否度量可度量1个向一个
2、方向无限延伸不可度量无端点向两个方向无限延伸不可度量3.基本作图(1)作一线段等于已知线段;(2)利用尺规作图作一条线段等于两条线段的和、差.5.有关线段的基本事实两点之间,线段最短.4.线段的中点应用格式:C是线段AB的中点,AC=BC=AB,AB=2AC=2BC.ACB6.连接两点的线段的长度,叫做这两点间的距离.三、角1.角的定义(1)有公共端点的两条射线组成的图形,叫做角;(2)角也可以看作由一条射线绕着它的端点旋转而形成的图形.2.角的度量度、分、秒的互化1°=60′,1′=60″3.角的平分线OBAC应用格式:OC是∠AO
3、B的角平分线,∠AOC=∠BOC=∠AOB∠AOB=2∠BOC=2∠AOC4.余角和补角(1)定义①如果两个角的和等于90°(直角),就说这两个角互为余角(简称为两个角互余).②如果两个角的和等于180°(平角),就说这两个角互为补角(简称为两个角互补).(2)性质①同角(等角)的补角相等.②同角(等角)的余角相等.(3)方位角①定义物体运动的方向与正北、正南方向之间的夹角称为方位角,一般以正北、正南为基准,用向东或向西旋转的角度表示方向.②书写通常要先写北或南,再写偏东或偏西考点一从不同方向看立体图形考点讲练例1如右图是由几个小立方
4、体搭成的几何体的从上面看到的平面图,小正方形中的数字表示在该位置小正方体的个数,画出从正面和左面方向看到的平面图形.1122考点讲练1122从正面看从左面看解:解析:根据图中的数字,可知从前面看有3列,从左到右的个数分别是1,2,1;从左面看有2列,个数都是2.1.如图,从正面看A,B,C,D四个立体图形,分别得到a,b,c,d四个平面图形,把上下两行相对应立体图形与平面图形用线连接起来.ABCDabcd针对训练考点二立体图形的展开图例2根据下列多面体的平面展开图,填写多面体的名称(1)_______,(2)_______,(3)__
5、______.长方体三棱柱三棱锥(1)(2)(3)2.在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体展开图的是()ABCDC针对训练考点三线段长度的计算例3如图,已知点C为AB上一点,AC=15cm,CB=AC,D,E分别为AC,AB的中点,求DE的长.ECADB解:∵AC=15cm,CB=AC,∴CB=×15=9cm,∴AB=15+9=24cm.∵D,E分别为AC,AB的中点,∴AE=AB=12cm,DC=AC=7.5cm,∴DE=AE-AD=12-7.5=4.5(cm).例4如图,B,C两点把线段AD分成2:5:3
6、三部分,M为AD的中点,MC=6cm,求线段BM和AD的长.DABCM提示:题目中线段间有明显的倍分关系,且和差关系较为复杂,可以尝试列方程解答.由MC+CD=MD得,3x+6=5x.解得x=3.故BM=AM-AB=5x-2x=3x=3×3=9(cm),AD=10x=10×3=30(cm).DABCM解:设AB=2xcm,BC=5xcm,CD=3xcm,则AD=AB+BC+CD=10xcm.∵M是AD的中点,∴AM=MD=AD=5xcm.例5点C在线段AB所在的直线上,点M,N分别是AC,BC的中点.(1)如图,AC=8cm,CB=6
7、cm,求线段MN的长;AMCNB∴CM=AC=4(cm),CN=BC=3(cm),解:∵点M,N分别是AC,BC的中点,∴MN=CM+CN=4+3=7(cm).(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;AMCNB证明:同(1)可得CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=a(cm).猜想:MN=acm.(3)若C在线段AB的延长线上,且满足AC-BC=bcm,M,N分别为AC,BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.AMBNCM
8、N=MC-NC=AC-BC=(AC-BC)=b(cm).猜想:MN=bcm.证明:根据题意画出图形,由图可得针对训练3.如图:线段AB=100cm,点C,D在线段AB上.点M是线段AD的中点,MD=21cm,BC=34c
此文档下载收益归作者所有