资源描述:
《(浙江专用)2020届高考数学一轮复习第八章立体几何8.4直线、平面垂直的判定和性质课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§8.4 直线、平面垂直的判定和性质高考数学(浙江专用)(2015浙江,17,15分)如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1-BD-B1的平面角的余弦值.A组 自主命题·浙江卷题组五年高考解析(1)证明:设E为BC的中点,连接A1E,AE,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且
2、DE=A1A,所以四边形A1AED为平行四边形.故A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)解法一:作A1F⊥BD且A1F∩BD=F,连接B1F.由AE=EB=,∠A1EA=∠A1EB=90°,得A1B=A1A=4.由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等.由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1-BD-B1的平面角.由A1D=,A1B=4,∠DA1B=90°,得BD=3,A1F=B1F=,由余弦定理得cos∠A1FB1=-.解法二:以CB的中点E为原点,分别以射线EA,EB为x,y轴的正半轴,建立空间直角
3、坐标系E-xyz,如图所示.由题意知各点坐标如下:A1(0,0,),B(0,,0),D(-,0,),B1(-,,).因此=(0,,-),=(-,-,),=(0,,0).设平面A1BD的法向量为m=(x1,y1,z1),平面B1BD的法向量为n=(x2,y2,z2).由即可取m=(0,,1).由即可取n=(,0,1).于是
4、cos
5、==.由题意可知,所求二面角的平面角是钝角,故二面角A1-BD-B1的平面角的余弦值为-.评析本题主要考查空间点、线、面的位置关系,二面角等基础知识,同时考查空间想象能力和运算求解能力.考点一 线面垂直的判定与性质B组 统一命题、省(区、市)
6、卷题组1.(2017课标全国Ⅲ文,10,5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC答案C ∵A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,∴A1B1⊥BC1,又BC1⊥B1C,且B1C∩A1B1=B1,∴BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,∴BC1⊥A1E.故选C.2.(2015安徽,5,5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,
7、β,则在α内与β平行的直线D.若m,n,则m与n垂直于同一平面答案 D若α,β垂直于同一个平面γ,则α,β可以都过γ的同一条垂线,即α,β可以相交,故A错;若m,n平行于同一个平面,则m与n可能平行,也可能相交,还可能异面,故B错;若α,β不平行,则α,β相交,设α∩β=l,在α内存在直线a,使a∥l,则a∥β,故C错;从原命题的逆否命题进行判断,若m与n垂直于同一个平面,则由线面垂直的性质定理知m∥n,故D正确.3.(2019北京理,12,5分)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作
8、为结论,写出一个正确的命题:.答案若l⊥m,l⊥α,则m∥α(答案不唯一)解析本题考查线面平行、垂直的位置关系,考查了逻辑推理能力和空间想象能力.把其中两个论断作为条件,余下的一个论断作为结论,共有三种情况.对三种情况逐一验证.①②作为条件,③作为结论时,还可能l∥α或l与α斜交;①③作为条件,②作为结论和②③作为条件,①作为结论时,容易证明命题成立.易错警示容易忽视l,m是平面α外的两条不同直线这一条件,导致判断错误.4.(2019天津文,17,13分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,
9、AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.解析本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.以线面角的计算为依托考查数学运算与直观想象的核心素养.满分13分.(1)证明:连接BD,易知AC∩BD=H,BH=DH.又由BG=PG,故GH∥PD.又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证