资源描述:
《(山东专用)2020届高考数学一轮复习第八章立体几何8.3直线、平面垂直的判定和性质课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考数学(山东专用)§8.3 直线、平面垂直的判定和性质A组 山东省卷、课标Ⅰ卷题组考点 垂直的判定和性质五年高考1.(2018课标全国Ⅰ,18,12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.解析(1)证明:由已知可得BF⊥EF,又已知BF⊥PF,且PF、EF⊂平面PEF,PF∩EF=F,所以BF⊥平面PEF,又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面A
2、BFD.以H为坐标原点,的方向为y轴正方向,
3、
4、为单位长,建立如图所示的空间直角坐标系H-xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=,又PF=1,EF=2,故PE⊥PF,可得PH=,EH=,则H(0,0,0),P,D,=,=为平面ABFD的法向量.设DP与平面ABFD所成角为θ,则sinθ===.所以DP与平面ABFD所成角的正弦值为.2.(2018课标全国Ⅰ文,18,12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段A
5、D上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积.解析(1)证明:由已知可得,∠BAC=90°,BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3.又BP=DQ=DA,所以BP=2.作QE⊥AC,垂足为E,则QE?DC.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-ABP的体积为VQ-ABP=·QE·S△ABP=×1××3×2sin45°=1.规律总结证明空间线面位置关系的一般步骤:(1)审清题意:分析条件,挖掘题目中平行
6、与垂直的关系;(2)明确方向:确定问题的方向,选择证明平行或垂直的方法,必要时添加辅助线;(3)给出证明:利用平行、垂直关系的判定或性质给出问题的证明;(4)反思回顾:查看关键点、易漏点,检查使用定理时定理成立的条件是否遗漏,符号表达是否准确.解题关键(1)利用平行关系将∠ACM=90°转化为∠BAC=90°是求证第(1)问的关键;(2)利用翻折的性质将∠ACM=90°转化为∠ACD=90°,进而利用面面垂直的性质定理及线面垂直的性质定理得出三棱锥Q-ABP的高是求解第(2)问的关键.B组 课标卷、其他自主命题省(区、市)卷题组考点 垂直的判定和性质1.(2019北京理,12,
7、5分)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.答案若l⊥m,l⊥α,则m∥α(答案不唯一)解析本题考查线面平行、垂直的位置关系,考查了逻辑推理能力和空间想象能力.把其中两个论断作为条件,余下的一个论断作为结论,共有三种情况.对三种情况逐一验证.①②作为条件,③作为结论时,还可能l∥α或l与α斜交;①③作为条件,②作为结论和②③作为条件,①作为结论时,容易证明命题成立.易错警示容易忽视l,m是平面α外的两条不同直线这一条件,导致判断错误.2.(2019天津文,17,
8、13分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.解析本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.以线面角的计算为依托考查数学运算与直观想象的核心素养.(1)证明:连接BD,易知AC∩BD=H,BH=DH.又BG=PG,故GH∥PD.又因为GH⊄平面PAD,PD⊂平面PAD,
9、所以GH∥平面PAD.(2)证明:取棱PC的中点N,连接DN.依题意,得DN⊥PC.又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA.又已知PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)连接AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=.又DN⊥AN,在Rt△AND中,sin∠DAN==.所以,直线AD与平面PAC所成角的正