2020版高考数学复习第九章平面解析几何9.1直线的方程课件文新人教A版.pptx

2020版高考数学复习第九章平面解析几何9.1直线的方程课件文新人教A版.pptx

ID:52948244

大小:3.01 MB

页数:69页

时间:2020-04-04

2020版高考数学复习第九章平面解析几何9.1直线的方程课件文新人教A版.pptx_第1页
2020版高考数学复习第九章平面解析几何9.1直线的方程课件文新人教A版.pptx_第2页
2020版高考数学复习第九章平面解析几何9.1直线的方程课件文新人教A版.pptx_第3页
2020版高考数学复习第九章平面解析几何9.1直线的方程课件文新人教A版.pptx_第4页
2020版高考数学复习第九章平面解析几何9.1直线的方程课件文新人教A版.pptx_第5页
资源描述:

《2020版高考数学复习第九章平面解析几何9.1直线的方程课件文新人教A版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§9.1直线的方程第九章 平面解析几何NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PARTONE1.平面直角坐标系中的基本公式(1)两点的距离公式:已知平面直角坐标系中的两点A(x1,y1),B(x2,y2),则d(A,B)=

2、AB

3、=____________________.(2)中点公式:已知平面直角坐标系中的两点A(x1,y1),B(x2,y2),点M(x,y)是线段AB的中点,则x=______,y=_______.知识梳理ZHISHISHULI2.直线的倾斜角(1)定义:

4、x轴与直线的方向所成的角叫做这条直线的倾斜角,我们规定,与x轴平行或重合的直线的倾斜角为.(2)倾斜角的范围:.正向向上零度角[0°,180°)3.直线的斜率(1)定义:通常,我们把直线y=kx+b中的叫做这条直线的斜率,垂直于x轴的直线,人们常说它的斜率不存在;(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x轴,则k=______________.若直线的倾斜角为,则k=.系数k4.直线方程的五种形式名称方程适用范围点斜式______________不含直线x=x0斜截式__________不含垂直于

5、x轴的直线两点式_____________不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式_________不含垂直于坐标轴和过原点的直线一般式_________________________平面直角坐标系内的直线都适用y-y0=k(x-x0)y=kx+bAx+By+C=0(A2+B2≠0)1.直线都有倾斜角,是不是都有斜率?倾斜角越大,斜率k就越大吗?【概念方法微思考】2.“截距”与“距离”有何区别?当截距相等时应注意什么?提示“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负

6、数.应注意过原点的特殊情况是否满足题意.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.()(2)若直线的斜率为tanα,则其倾斜角为α.()(3)斜率相等的两直线的倾斜角不一定相等.()(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.()√××√基础自测JICHUZICE123456题组二 教材改编2.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为

7、A.1B.4C.1或3D.1或4√1234563.过点P(2,3)且在两坐标轴上截距相等的直线方程为______________________.3x-2y=0或x+y-5=0解析当截距为0时,直线方程为3x-2y=0;123456题组三 易错自纠4.直线x+(a2+1)y+1=0的倾斜角的取值范围是√1234565.如果A·C<0且B·C<0,那么直线Ax+By+C=0不通过A.第一象限B.第二象限C.第三象限D.第四象限123456√6.过直线l:y=x上的点P(2,2)作直线m,若直线l,m与x轴围成的三角形的面积为2,则

8、直线m的方程为.解析①若直线m的斜率不存在,则直线m的方程为x=2,直线m,直线l和x轴围成的三角形的面积为2,符合题意;x-2y+2=0或x=2②若直线m的斜率k=0,则直线m与x轴没有交点,不符合题意;综上可知,直线m的方程为x-2y+2=0或x=2.6123452题型分类 深度剖析PARTTWO题型一 直线的倾斜角与斜率师生共研√解析直线2xcosα-y-3=0的斜率k=2cosα,(2)(2018·抚顺调研)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为.引申探究1.

9、若将本例(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.2.若将本例(2)中的B点坐标改为(2,-1),其他条件不变,求直线l倾斜角的取值范围.解如图,直线PA的倾斜角为45°,直线PB的倾斜角为135°,由图象知l的倾斜角的范围为[0°,45°]∪[135°,180°).(1)倾斜角α与斜率k的关系思维升华(2)斜率的两种求法①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k=tanα求斜率.(3)倾斜角α范围与直线斜率范围互求时,要充分利用y=tanα的单调性.跟踪训练1(1)若平面

10、内三点A(1,-a),B(2,a2),C(3,a3)共线,则a等于解析∵平面内三点A(1,-a),B(2,a2),C(3,a3)共线,∴kAB=kAC,√(2)直线l经过A(3,1),B(2,-m2)(m∈R)两点,则直线l的倾斜角α的取值范围是.所以k=tan

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。