高中数学1.3.2奇偶性课件新人教A版必修.ppt

高中数学1.3.2奇偶性课件新人教A版必修.ppt

ID:52910620

大小:1.45 MB

页数:25页

时间:2020-04-14

高中数学1.3.2奇偶性课件新人教A版必修.ppt_第1页
高中数学1.3.2奇偶性课件新人教A版必修.ppt_第2页
高中数学1.3.2奇偶性课件新人教A版必修.ppt_第3页
高中数学1.3.2奇偶性课件新人教A版必修.ppt_第4页
高中数学1.3.2奇偶性课件新人教A版必修.ppt_第5页
资源描述:

《高中数学1.3.2奇偶性课件新人教A版必修.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.3.2奇偶性而我们所学习的函数图像也有类似的对称现象,请看下面的函数图像。观察下面两组图像,它们是否也有对称性呢?xyO1-1f(x)=x2(1)(2)yxOx0-x0学情调查,情景导入y1-11-1xOf(x)=x3则f(2)=;f(-2)=;f(1)=;f(-1)=;求值并观察总结规律则f(2)=;f(-2)=;f(1)=;f(-1)=;y1-11-1xOf(x)=2x1.已知f(x)=2x,2.已知f(x)=x3,=-f(x)f(-x)=4-42-2-2x=-f(x)f(-x)=-x38-81-1图象都是以坐标原点为对称中心的中

2、心对称图形问题展示,合作探究如果对于函数y=f(x)的定义域A内的任意一个x,都有f(-x)=-f(x),则这个函数叫做奇函数.奇函数的图象特征以坐标原点为对称中心的中心对称图形.y1-11-1xOy=f(x)(-x,f(-x))(x,f(x))f(-x)=-f(x)奇函数的定义奇函数图象是以坐标原点为对称中心的中心对称图形概念形成奇函数的定义域对应的区间关于坐标原点对称.改变奇函数的定义域,它还是奇函数吗?y1-11-1xOy=x3(x≠0)y1-11-1xOy=x3(x≠1)y1-11-1xOy=x3(x≥0)y1-11-1xOy=

3、x3(-1≤x≤1)是否否是自主探究奇函数的定义域对应的区间关于坐标原点对称.判断下列函数是奇函数吗?(1)f(x)=x3,x[-1,3];(2)f(x)=x,x(-1,1].否否自主探究解:(1)函数f(x)=的定义域为A={x

4、x≠0},所以定义域关于坐标原点对称.因为f(-x)==-=-f(x),所以函数f(x)=是奇函数.x1x1x1-x1例1判断下列函数是不是奇函数:(1)f(x)=;(2)f(x)=-x3;(3)f(x)=x+1;(4)f(x)=x+x3+x5+x7.x1例题解:(2)函数f(x)=-x3的定义域为R,所以

5、定义域关于坐标原点对称.因为f(-x)=-(-x)3=x3=-f(x),所以函数f(x)=-x3是奇函数.例1判断下列函数是不是奇函数:(1)f(x)=;(2)f(x)=-x3;(3)f(x)=x+1;(4)f(x)=x+x3+x5+x7.x1例题解:(3)函数f(x)=x+1的定义域为R,所以定义域关于坐标原点对称.因为f(-x)=-x+1-f(x)=-(x+1)=-x-1≠f(-x),所以函数f(x)=x+1不是奇函数.例1判断下列函数是不是奇函数:(1)f(x)=;(2)f(x)=-x3;(3)f(x)=x+1;(4)f(x)=x+

6、x3+x5+x7.x1例题解:(4)函数f(x)=x+x3+x5+x7的定义域为R,所以定义域关于坐标原点对称.f(-x)=-x+(-x)3+(-x)5+(-x)7=-(x+x3+x5+x7)=-f(x).所以函数f(x)=x+x3+x5+x7是奇函数.例1判断下列函数是不是奇函数:(1)f(x)=;(2)f(x)=-x3;(3)f(x)=x+1;(4)f(x)=x+x3+x5+x7.x1例题不是是是不是达标训练,巩固提升偶函数的定义如果对于函数y=f(x)的定义域A内的任意一个x,都有f(-x)=f(x),则这个函数叫做偶函数.偶函数的

7、图象特征以y轴为对称轴的轴对称图形.定义域对应的区间关于坐标原点对称.偶函数图象是以y轴为对称轴的轴对称图形y1-11-1xOy=f(x)(-x,f(-x))(x,f(x))自主探究解:(1)函数f(x)=x2+x4的定义域为R,所以定义域关于坐标原点对称.因为f(-x)=(-x)2+(-x)4=x2+x4=f(x),所以函数f(x)=x2+x4是偶函数.例2判断下列函数是不是偶函数:(1)f(x)=x2+x4;(2)f(x)=x2+1;(3)f(x)=x2+x3;(4)f(x)=x2+1,x[-1,3].例题解:(2)函数f(x)=

8、x2+1的定义域为R,所以定义域关于坐标原点对称.因为f(-x)=(-x)2+1=x2+1=f(x),所以函数f(x)=x2+1是偶函数.例2判断下列函数是不是偶函数:(1)f(x)=x2+x4;(2)f(x)=x2+1;(3)f(x)=x2+x3;(4)f(x)=x2+1,x[-1,3].例题解:(3)函数f(x)=x2+x3的定义域为R,所以定义域关于坐标原点对称.因为f(-x)=(-x)2+(-x)3=x2–x3≠f(x)函数f(x)=x2+x3不是偶函数.例2判断下列函数是不是偶函数:(1)f(x)=x2+x4;(2)f(x)=

9、x2+1;(3)f(x)=x2+x3;(4)f(x)=x2+1,x[-1,3].例题解:(4)函数f(x)=x2+1,x[-1,3]的定义域为A=[-1,3],因为定义域不关于坐标原点对称

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。