欢迎来到天天文库
浏览记录
ID:52897379
大小:1.02 MB
页数:12页
时间:2020-04-14
《陕西省吴堡县吴堡中学高中数学第二章在几何中的应用课件北师大版必修.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、向量在平面几何中的应用一、向量有关知识复习(1)向量共线的充要条件:与共线(2)向量垂直的充要条件:(3)两向量相等充要条件:且方向相同。(4)平面向量基本定理二、应用向量知识证明平面几何有关定理例1、证明直径所对的圆周角是直角ABCO如图所示,已知⊙O,AB为直径,C为⊙O上任意一点。求证∠ACB=90°分析:要证∠ACB=90°,只须证向量,即。即,∠ACB=90°思考:能否用向量坐标形式证明?二、应用向量知识证明平面几何有关定理例2、证明平行四边形四边平方和等于两对角线平方和ABDC已知:平行四边形ABCD。求
2、证:解:设,则分析:因为平行四边形对边平行且相等,故设其它线段对应向量用它们表示。∴三、应用向量知识证明三线共点、三点共线例3、已知:如图AD、BE、CF是△ABC三条高求证:AD、BE、CF交于一点FABCDEABCDEH分析:思路一:设AD与BE交于H,只要证CH⊥AB,即高CF与CH重合,即CF过点H由此可设利用AD⊥BC,BE⊥CA,对应向量垂直。三、应用向量知识证明三线共点、三点共线例3、已知:如图AD、BE、CF是△ABC三条高求证:AD、BE、CF交于一点ABCDEH解:设AD与BE交于H,即高CF与C
3、H重合,CF过点H,AD、BE、CF交于一点。三、应用向量知识证明三线共点、三点共线例4、如图已知△ABC两边AB、AC的中点分别为M、N,在BN延长线上取点P,使NP=BN,在CM延长线上取点Q,使MQ=CM。求证:P、A、Q三点共线ABCNMQP解:设则由此可得即故有,且它们有公共点A,所以P、A、Q三点共线四、应用向量知识证明等式、求值例5、如图ABCD是正方形M是BC的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形面积为64,求△AEM的面积ABCDMNEF分析:如图建立坐标系,设E(e,0),M
4、(8,4),N是AM的中点,故N(4,2)=(4,2)-(e,0)=(4-e,2)解得:e=5故△AEM的面积为10四、应用向量知识证明等式、求值例5、如图ABCD是正方形M是BC的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形面积为64,求△AEM的面积ABCDMNEF解:如图建立坐标系,设E(e,0),由正方形面积为64,可得边长为8由题意可得M(8,4),N是AM的中点,故N(4,2)=(4,2)-(e,0)=(4-e,2)解得:e=5即AE=5四、应用向量知识证明等式、求值练习:PQ过△OAB的重
5、心G,且OP=mOA,OQ=nOB求证:分析:由题意OP=mOA,OQ=nOB,联想线段的定比分点,利用向量坐标知识进行求解。OABG·PQ由PO=mOA,QO=nOB可知:O分的比为,O分的比为由此可设由向量定比分点公式,可求P、Q的坐标,而G为重心,其坐标也可求出,进而由向量,得到mn的关系。-m-n??四、应用向量知识证明等式、求值练习:PQ过△OAB的重心G,且OP=mOA,OQ=nOB求证:OABG·PQ证:如图建立坐标系,设所以重心G的坐标为由PO=mOA,QO=nOB可知:即O分的比为-m,O分的比为-
6、n求得由向量可得:化简得:五、小结、巩固练习:练习1:证明对角线互相垂直平分的四边形是菱形练习2:如图O为△ABC所在平面内一点,且满足求证:AB⊥OCABCO
此文档下载收益归作者所有