资源描述:
《福建专用2020版高考数学一轮复习第六章数列6.4数列求和课件新人教A版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、6.4数列求和-2-知识梳理双基自测2311.基本数列求和方法-3-知识梳理双基自测2312.非基本数列求和常用方法(1)倒序相加法:如果一个数列{an}的前n项中与首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(2)分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.如已知an=2n+(2n-1),求Sn.(3)并项求和法:一个数列的前n项和中两两结合后可求和,则可用并项求和法.如已知an=(-1)nf(n),求Sn.(4)错位相减法:如果一个数列的
2、各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用错位相减法来求,如等比数列的前n项和公式就是用此法推导的.-4-知识梳理双基自测231(5)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.-5-知识梳理双基自测2312-6-知识梳理双基自测34151.下列结论正确的打“√”,错误的打“×”.(2)利用倒序相加法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.()(3)若Sn=a+2a2+3a3+…+nan,当a≠0,且a≠1时,求Sn的值可用错位相减法求得.()(4)如果数列
3、{an}是周期为k的周期数列,那么Skm=mSk(m,k为大于1的正整数).()()(6)若Sn=1-2+3-4+…+(-1)n-1·n,则S50=-25.()答案答案关闭(1)×(2)√(3)√(4)√(5)×(6)√-7-知识梳理双基自测234152.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2答案解析解析关闭答案解析关闭-8-知识梳理双基自测234153.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=()A.15B.12C.-12D.-15
4、答案解析解析关闭因为an=(-1)n(3n-2),所以a1+a2+…+a10=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案解析关闭A-9-知识梳理双基自测23415答案解析解析关闭答案解析关闭-10-知识梳理双基自测234155.已知等差数列{an}的前n项和为Sn,a3=3,S4=10,则=.答案解析解析关闭答案解析关闭-11-考点1考点2考点3例1在等比数列{an}中,已知a1=3,公比q≠1,等差数列{bn}满足b1=a1,b4=a2,b13=a3.(1)求数列{an}与{bn}的通项公式;(2)记cn=(-1)nbn+an,求数列{cn}的前n项和Sn.思考
5、具有什么特点的数列适合并项求和?具有什么特点的数列适合分组求和?-12-考点1考点2考点3解(1)设等差数列{bn}的公差为d.由已知,得a2=3q,a3=3q2,b1=3,b4=3+3d,b13=3+12d,∴d=2,∴an=3n,bn=2n+1.(2)由题意,得cn=(-1)nbn+an=(-1)n(2n+1)+3n,Sn=c1+c2+…+cn=(-3+5)+(-7+9)+…+[(-1)n-1(2n-1)+(-1)n(2n+1)]+3+32+…+3n.-13-考点1考点2考点3解题心得1.若数列{an}的通项公式为an=(-1)nf(n),则一般利用并项求和法求数列前n项和.2.具有下列
6、特点的数列适合分组求和(1)若an=bn±cn,且{bn},{cn}为等差数列或等比数列,可采用分组求和法求{an}的前n项和;(2)通项公式为的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和.-14-考点1考点2考点3对点训练1(2018河北衡水中学模拟)已知等差数列{an}的前n项和为Sn(n∈N*),数列{bn}是等比数列,a1=3,b1=1,b2+S2=10,a5-2b2=a3.(1)求数列{an}和{bn}的通项公式;解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,∵a1=3,b1=1,b2+S2=10,a5-2b2=a3,∴an=2
7、n+1,bn=2n-1.-15-考点1考点2考点3-16-考点1考点2考点3例2已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和数列{an}的通项公式;思考具有什么特点的数列适合用错位相减法求和?-17-考点1考点2考点3-18-考点1考点2考点3-19-考点1考点2考点3解题心得1.一般地,数列{an}