欢迎来到天天文库
浏览记录
ID:29786499
大小:257.56 KB
页数:15页
时间:2018-12-23
《(江苏专用)2017版高考数学一轮复习 第六章 数列 6.4 数列求和 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【步步高】(江苏专用)2017版高考数学一轮复习第六章数列6.4数列求和文求数列的前n项和的方法(1)公式法①等差数列的前n项和公式Sn==na1+d.②等比数列的前n项和公式(ⅰ)当q=1时,Sn=na1;(ⅱ)当q≠1时,Sn==.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①=-;②=;③=-.(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个
2、等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.例如,Sn=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.( √ )(2)当n≥2时,=(-).( √ )(3)求Sn=a+2a2
3、+3a3+…+nan之和时,只要把上式等号两边同时乘以a即可根据错位相减法求得.( × )(4)数列{+2n-1}的前n项和为n2+.( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.( √ )1.(教材改编)数列{an}的前n项和为Sn,若an=,则S5=________.答案 解析 ∵an==-,∴S5=a1+a2+…+a5=1-+-+…-=.2.数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100
4、项之和S100=________.答案 -200解析 S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.等差数列{an}的通项公式为an=2n+1,其前n项和为Sn,则数列的前10项的和为________.答案 75解析 因为=n+2,所以的前10项和为10×3+=75.4.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和Sn=____________.答案 2n+1-2+n2解析 Sn=+=2
5、n+1-2+n2.5.数列{an}的通项公式为an=ncos,其前n项和为Sn,则S2017=________.答案 1008解析 因为数列an=ncos呈周期性变化,观察此数列规律如下:a1=0,a2=-2,a3=0,a4=4.故S4=a1+a2+a3+a4=2.∴S2017=S2016+a2017=×2+2017·cosπ=1008.题型一 分组转化法求和例1 已知数列{an}的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.解 (1)当n=1时,a1=
6、S1=1;当n≥2时,an=Sn-Sn-1=-=n.a1也满足an=n,故数列{an}的通项公式为an=n.(2)由(1)知an=n,故bn=2n+(-1)nn.记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).记A=21+22+…+22n,B=-1+2-3+4-…+2n,则A==22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{bn}的前2n项和T2n=A+B=22n+1+n-2.引申探究例1(2)中,求数列{bn}的前n项和Tn.解
7、由(1)知bn=2n+(-1)n·n.当n为偶数时,Tn=(21+22+…+2n)+[-1+2-3+4-…-(n-1)+n]=+=2n+1+-2.当n为奇数时,Tn=(21+22+…+2n)+[-1+2-3+4-…-(n-2)+(n-1)-n]=2n+1-2+-n=2n+1--.∴Tn=思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论. 已知数列{an}的通项公式是an=2·3n-1+
8、(-1)n·(ln2-ln3)+(-1)nnln3,求其前n项和Sn.解 Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln2-ln3)+[-1+2-3+…+(-1)nn]ln3,当n为偶数时,Sn=2×+ln
此文档下载收益归作者所有