2018版高考数学复习第六章数列第1讲数列的概念及简单表示法课件理新人教版.pptx

2018版高考数学复习第六章数列第1讲数列的概念及简单表示法课件理新人教版.pptx

ID:52805580

大小:14.23 MB

页数:30页

时间:2020-03-15

2018版高考数学复习第六章数列第1讲数列的概念及简单表示法课件理新人教版.pptx_第1页
2018版高考数学复习第六章数列第1讲数列的概念及简单表示法课件理新人教版.pptx_第2页
2018版高考数学复习第六章数列第1讲数列的概念及简单表示法课件理新人教版.pptx_第3页
2018版高考数学复习第六章数列第1讲数列的概念及简单表示法课件理新人教版.pptx_第4页
2018版高考数学复习第六章数列第1讲数列的概念及简单表示法课件理新人教版.pptx_第5页
资源描述:

《2018版高考数学复习第六章数列第1讲数列的概念及简单表示法课件理新人教版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1讲 数列的概念及简单表示法最新考纲1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的概念(1)数列的定义:按照_________排列的一列数称为数列,数列中的每一个数叫做这个数列的_____.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为_______的函数an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是_________、________和____________.一定顺序项定义域列表法图象

2、法通项公式法2.数列的分类分类原则类型满足条件按项数分类有穷数列项数____无穷数列项数_____按项与项间的大小关系分类递增数列an+1———an其中n∈N*递减数列an+1———an常数列an+1=an按其他标准分类有界数列存在正数M,使

3、an

4、≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列有限无限><3.数列的两种常用的表示方法(1)通项公式:如果数列{an}的第n项an与______之间的关系可以用一个式子_______来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{an}的第1项(或前几项),且从第二项(

5、或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.序号nan=f(n)S1Sn-Sn-1诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)相同的一组数按不同顺序排列时都表示同一个数列.()(2)一个数列中的数是不可以重复的.()(3)所有数列的第n项都能使用公式表达.()(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.()解析(1)数列:1,2,3和数列:3,2,1是不同的数列.(2)数列中的数是可以重复的.(3)不是所有的数列都有通项公式.答案(1)×(2)×(

6、3)×(4)√答案C3.设数列{an}的前n项和Sn=n2,则a8的值为()A.15B.16C.49D.64解析当n=8时,a8=S8-S7=82-72=15.答案A4.已知an=n2+λn,且对于任意的n∈N*,数列{an}是递增数列,则实数λ的取值范围是________.解析因为{an}是递增数列,所以对任意的n∈N*,都有an+1>an,即(n+1)2+λ(n+1)>n2+λn,整理,得2n+1+λ>0,即λ>-(2n+1).(*)因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.答案(-3,+∞)5.(2016·浙江卷改编)设数列{

7、an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则S5=________.解析由an+1=2Sn+1,an+1=Sn+1-Sn,∴Sn+1=3Sn+1,又S2=4,∴S3=13,S4=40,S5=121.答案121考点一 由数列的前几项求数列的通项解(1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为an=(-1)n(6n-5).规律方法根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的各自特征;(2)相邻项的联系

8、特征;(3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.考点二 由Sn与an的关系求an(易错警示)易错警示在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成an=Sn-Sn-1的形式,但它只适用于n≥2的情形.【训练2】(1)(2017·河南八校一联)在数列{an}中,Sn是其前n项和,且Sn=2an+1,则数列的通项公式an=________.(2)已知数列{an}的前n项和Sn=3n+1,则数列的通项公式an=________.解析(1)依题意得Sn+1=2an+1+1,Sn=2a

9、n+1,两式相减得Sn+1-Sn=2an+1-2an,即an+1=2an,又S1=2a1+1=a1,因此a1=-1,所以数列{an}是以a1=-1为首项、2为公比的等比数列,an=-2n-1.考点三 由数列的递推关系求通项公式(3)形如an+1=pan+q的递推关系式可以化为(an+1+x)=p(an+x)的形式,构成新的等比数列,求出通项公式,求变量x是关键.[思想方法]1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n或(-1)n+1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。