欢迎来到天天文库
浏览记录
ID:52790032
大小:669.50 KB
页数:8页
时间:2020-03-30
《圆锥曲线共线向量问题.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、共线向量问题解析几何中的向量共线,就是将向量问题转化为同类坐标的比例问题,再通过未达定理------同类坐标变换,将问题解决。此类问题不难解决。例题7、设过点D(0,3)的直线交曲线M:于P、Q两点,且,求实数的取值范围。分析:由可以得到,将P(x1,y1),Q(x2,y2),代人曲线方程,解出点的坐标,用表示出来。解:设P(x1,y1),Q(x2,y2),,(x1,y1-3)=(x2,y2-3),即方法一:方程组消元法,又P、Q是椭圆+=1上的点消去x2,可得,即y2=又-2y22,-22解之得:则实数的取值范围是。方法二:判别式法、韦达
2、定理法、配凑法设直线PQ的方程为:,由消y整理后,得P、Q是曲线M上的两点,=即①由韦达定理得:即②由①得,代入②,整理得,解之得当直线PQ的斜率不存在,即时,易知或。总之实数的取值范围是。方法总结:通过比较本题的第二步的两种解法,可知第一种解法,比较简单,第二种方法是通性通法,但计算量较大,纵观高考中的解析几何题,若放在后两题,很多情况下能用通性通法解,但计算量较大,计算繁琐,考生必须有较强的意志力和极强的计算能力;不用通性通法,要求考生必须深入思考,有较强的思维能力,在命题人设计的框架中,找出破解的蛛丝马迹,通过自己的思维将问题解决。例
3、题8:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率为.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若,,求的值.分析:(07福建理科)如图,已知点(1,0),直线l:x=-1,P为平面上的动点,过作直线l的垂线,垂足为点,且(Ⅰ)求动点的轨迹C的方程;(Ⅱ)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知,求的值。小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分.解法一:(
4、Ⅰ)设点,则,由得:,化简得.(Ⅱ)设直线的方程为:.设,,又,联立方程组,消去得:,,故由,得:,,整理得:,,解法二:(Ⅰ)由得:,,,所以点的轨迹是抛物线,由题意,轨迹的方程为:.(Ⅱ)由已知,,得.则:.…………①过点分别作准线的垂线,垂足分别为,,则有:.…………②由①②得:,即.练习:设椭圆的左、右焦点分别为、,A是椭圆C上的一点,且,坐标原点O到直线的距离为.(1)求椭圆C的方程;(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点,较y轴于点M,若,求直线l的方程.山东2006理双曲线C与椭圆有相同的焦点,直线y=为C的一条渐
5、近线。(I)求双曲线C的方程;(II)过点P(0,4)的直线,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合)。当,且时,求Q点的坐标。解:(Ⅱ)解法一:由题意知直线的斜率存在且不等于零。设的方程:,则在双曲线上,同理有:若则直线过顶点,不合题意.是二次方程的两根.,此时.所求的坐标为.解法二:由题意知直线的斜率存在且不等于零设的方程,,则.,分的比为.由定比分点坐标公式得下同解法一解法三:由题意知直线的斜率存在且不等于零设的方程:,则.,.,,,又,即,将代入得,否则与渐近线平行。。解法四:由题意知直线l得斜率k存在且不等于零
6、,设的方程:,则,。同理,.即(*)又,消去y得.当时,则直线l与双曲线得渐近线平行,不合题意,。由韦达定理有:代入(*)式得所求Q点的坐标为。练习:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于。(1)求椭圆C的标准方程;(2)点P为椭圆上一点,弦PA、PB分别过焦点F1、F2,(PA、PB都不与x轴垂直,其点P的纵坐标不为0),若,求的值。解:(1)设椭圆C的方程为:,则b=1,由,得,则椭圆的方程为:(2)由得:,设,有得:解得:,根据PA、PB都不与x轴垂直,且,设直线PA的方程为:,代人,整理后,
7、得:根据韦达定理,得:,则,从而,,同理可求则由为椭圆上一点得:,则,故的值为18.
此文档下载收益归作者所有