二次函数在销售方面的应用.pptx

二次函数在销售方面的应用.pptx

ID:52742677

大小:319.66 KB

页数:14页

时间:2020-02-29

二次函数在销售方面的应用.pptx_第1页
二次函数在销售方面的应用.pptx_第2页
二次函数在销售方面的应用.pptx_第3页
二次函数在销售方面的应用.pptx_第4页
二次函数在销售方面的应用.pptx_第5页
资源描述:

《二次函数在销售方面的应用.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章二次函数2.4二次函数的应用第3课时利用二次函数解决利润问题1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.顶点坐标为:()①当a>0时,y有最小值k②当a<0时,y有最大值k商品单件利润=()-()总利润=()*()=()-()例1.(青海·中考)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少

2、10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程得:(5+x)(200-10x)=1500,解得:x1=10,x2=5.因为要顾客得到实惠,5<10所以x=5.答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=(x+5)(200-10x)=-10x2+150x+1000,当x=时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多.探究.

3、(青岛·中考)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)(1)由题意,得:w=(x-20)·y=(x-20)

4、·(-10x+500)=-10x2+700x-10000答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得:解这个方程得:x1=30,x2=40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.【解析】当时,w有最大值.∴抛物线开口向下.∴当30≤x≤40时,w≥2000.∵x≤32,∴当30≤x≤32时,w≥2000.设成本为P(元),由题意,得:P=20(-10x+500)=-200x+10000,∵k=-200<0,∴P随x的增大而减小.∴当x=32时,P最小=3600.答:想要每月获得的利润不低于2

5、000元,每月的成本最少需要3600元.(3)∵【规律方法】先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.“何时获得最大利润”问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。