欢迎来到天天文库
浏览记录
ID:52718900
大小:779.50 KB
页数:10页
时间:2020-03-29
《双曲线的性质A知识讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、双曲线的性质编稿:张希勇审稿:李霞【学习目标】1.理解双曲线的对称性、范围、定点、离心率、渐近线等简单性质.2.能利用双曲线的简单性质求双曲线的方程.3.能用双曲线的简单性质分析解决一些简单的问题.【要点梳理】【高清课堂:双曲线的性质356749知识要点二】要点一、双曲线的简单几何性质双曲线2、0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。p1EanqFDPw顶点①双曲线与它的对称轴的交点称为双曲线的顶点。②双曲线3、A1A24、=2a,5、B1B26、=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。DXDiTa9E7、3d①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。RTCrpUDGiT③等轴双曲线,所以离心率。渐近线经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形<如图),矩形的两条对角线所在直线的方程是。5PCzVD78、HxA我们把直线叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。【高清课堂:双曲线的性质356749知识要点一、3】10/10要点二、双曲线两个标准方程几何性质的比较标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点轴实轴长=,虚轴长=离心率渐近线方程要点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上。jLBHrnAILg对于双曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上。要点三、双曲线的渐近9、线<1)已知双曲线方程求渐近线方程:若双曲线方程为,则其渐近线方程为已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。<2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求出即可。10/10<3)与双曲线有公共渐近线的双曲线与双曲线有公共渐近线的双曲线方程可设为<,焦点在轴上,,焦点在y轴上)<4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为.要点四、双曲线中a,b,c的几何意义及有关线段的几何特征:双曲线标准方程中,a、b、c三个量的大小与坐标系无关,是由双曲线本身的形状大小所确定的,分别10、表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c>b>0,c>a>0,且c2=b2+a2。xHAQX74J0X双曲线,如图:<1)实轴长,虚轴长,焦距,<2)离心率:;<3)顶点到焦点的距离:,;<4)中结合定义与余弦定理,将有关线段、、和角结合起来.<5)与焦点三角形有关的计算问题时,常考虑到用双曲线的定义及余弦定理<或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段、、,有关角结合起来,建立、之间的关系.LDAYtRyKfE【典型例题】10/10类型一:双曲线的简单几何性质【高清课堂:双曲线的性质356749例1】例1.求双曲线的实轴长和虚11、轴长、顶点坐标、焦点坐标、渐近线方程与离心率.【解读】把方程化为标准方程,由此可知实半轴长,虚半轴长,∴∴双曲线的实轴长,虚轴长,顶点坐标,焦点坐标,离心率,渐近线方程为【总结升华】在几何性质的讨论中要注意a和2a,b和2b的区别,另外也要注意焦点所在轴的不同,几何量也有不同的表示.Zzz6ZB2Ltk举一反三:【变式1】双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m等于(>A.B.-4C.4D.【答案】A【变式2】已知双曲线8
2、0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。p1EanqFDPw顶点①双曲线与它的对称轴的交点称为双曲线的顶点。②双曲线3、A1A24、=2a,5、B1B26、=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。DXDiTa9E7、3d①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。RTCrpUDGiT③等轴双曲线,所以离心率。渐近线经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形<如图),矩形的两条对角线所在直线的方程是。5PCzVD78、HxA我们把直线叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。【高清课堂:双曲线的性质356749知识要点一、3】10/10要点二、双曲线两个标准方程几何性质的比较标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点轴实轴长=,虚轴长=离心率渐近线方程要点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上。jLBHrnAILg对于双曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上。要点三、双曲线的渐近9、线<1)已知双曲线方程求渐近线方程:若双曲线方程为,则其渐近线方程为已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。<2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求出即可。10/10<3)与双曲线有公共渐近线的双曲线与双曲线有公共渐近线的双曲线方程可设为<,焦点在轴上,,焦点在y轴上)<4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为.要点四、双曲线中a,b,c的几何意义及有关线段的几何特征:双曲线标准方程中,a、b、c三个量的大小与坐标系无关,是由双曲线本身的形状大小所确定的,分别10、表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c>b>0,c>a>0,且c2=b2+a2。xHAQX74J0X双曲线,如图:<1)实轴长,虚轴长,焦距,<2)离心率:;<3)顶点到焦点的距离:,;<4)中结合定义与余弦定理,将有关线段、、和角结合起来.<5)与焦点三角形有关的计算问题时,常考虑到用双曲线的定义及余弦定理<或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段、、,有关角结合起来,建立、之间的关系.LDAYtRyKfE【典型例题】10/10类型一:双曲线的简单几何性质【高清课堂:双曲线的性质356749例1】例1.求双曲线的实轴长和虚11、轴长、顶点坐标、焦点坐标、渐近线方程与离心率.【解读】把方程化为标准方程,由此可知实半轴长,虚半轴长,∴∴双曲线的实轴长,虚轴长,顶点坐标,焦点坐标,离心率,渐近线方程为【总结升华】在几何性质的讨论中要注意a和2a,b和2b的区别,另外也要注意焦点所在轴的不同,几何量也有不同的表示.Zzz6ZB2Ltk举一反三:【变式1】双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m等于(>A.B.-4C.4D.【答案】A【变式2】已知双曲线8
3、A1A2
4、=2a,
5、B1B2
6、=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。DXDiTa9E
7、3d①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。RTCrpUDGiT③等轴双曲线,所以离心率。渐近线经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形<如图),矩形的两条对角线所在直线的方程是。5PCzVD7
8、HxA我们把直线叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。【高清课堂:双曲线的性质356749知识要点一、3】10/10要点二、双曲线两个标准方程几何性质的比较标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点轴实轴长=,虚轴长=离心率渐近线方程要点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上。jLBHrnAILg对于双曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上。要点三、双曲线的渐近
9、线<1)已知双曲线方程求渐近线方程:若双曲线方程为,则其渐近线方程为已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。<2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求出即可。10/10<3)与双曲线有公共渐近线的双曲线与双曲线有公共渐近线的双曲线方程可设为<,焦点在轴上,,焦点在y轴上)<4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为.要点四、双曲线中a,b,c的几何意义及有关线段的几何特征:双曲线标准方程中,a、b、c三个量的大小与坐标系无关,是由双曲线本身的形状大小所确定的,分别
10、表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c>b>0,c>a>0,且c2=b2+a2。xHAQX74J0X双曲线,如图:<1)实轴长,虚轴长,焦距,<2)离心率:;<3)顶点到焦点的距离:,;<4)中结合定义与余弦定理,将有关线段、、和角结合起来.<5)与焦点三角形有关的计算问题时,常考虑到用双曲线的定义及余弦定理<或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段、、,有关角结合起来,建立、之间的关系.LDAYtRyKfE【典型例题】10/10类型一:双曲线的简单几何性质【高清课堂:双曲线的性质356749例1】例1.求双曲线的实轴长和虚
11、轴长、顶点坐标、焦点坐标、渐近线方程与离心率.【解读】把方程化为标准方程,由此可知实半轴长,虚半轴长,∴∴双曲线的实轴长,虚轴长,顶点坐标,焦点坐标,离心率,渐近线方程为【总结升华】在几何性质的讨论中要注意a和2a,b和2b的区别,另外也要注意焦点所在轴的不同,几何量也有不同的表示.Zzz6ZB2Ltk举一反三:【变式1】双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m等于(>A.B.-4C.4D.【答案】A【变式2】已知双曲线8
此文档下载收益归作者所有