五法求二面角.doc

五法求二面角.doc

ID:52612362

大小:600.50 KB

页数:7页

时间:2020-03-29

五法求二面角.doc_第1页
五法求二面角.doc_第2页
五法求二面角.doc_第3页
五法求二面角.doc_第4页
五法求二面角.doc_第5页
资源描述:

《五法求二面角.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、五法求二面角上犹中学数学教研组刘道生从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。一、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。本定义为解题提供了添辅助线的一种规律。如例1中从

2、二面角S—AM—B中半平面ABM上的一已知点(B)向棱AM作垂线,得垂足(F);在另一半平面ASM内过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。例1(2009全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,点M在侧棱上,=60°(I)证明:M在侧棱的中点(II)求二面角的大小。证(I)略FG解(II):利用二面角的定义。在等边三角形中过点作交于点,则点为AM的中点,过F点在平面ASM内作,GF交AS于G,连结AC

3、,∵△ADC≌△ADS,∴AS-AC,且M是SC的中点,∴AM⊥SC,GF⊥AM,∴GF∥AS,又∵为AM的中点,∴GF是△AMS的中位线,点G是AS的中点。则即为所求二面角.FG∵,则,又∵,∴∵,∴△是等边三角形,∴在△中,,,,∴∴二面角的大小为练习1(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.分析:第1题容易发现,可通过证AE⊥AD后推出AE

4、⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。(答案:二面角的余弦值为)二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P在一个半平面上则通常用三垂线定理法求二面角的大小。EABCFE1A1B1C1D1D本定理亦提供了另一种添辅助线的一般规律。如(例2)过二面角B-FC-C中半平面BFC上的一已知点B作另一半平面FC1C的

5、垂线,得垂足O;再过该垂足O作棱FC1的垂线,得垂足P,连结起点与终点得斜线段PB,便形成了三垂线定理的基本构图(斜线PB、垂线BO、射影OP)。再解直角三角形求二面角的度数。例2.(2009山东卷理)如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA=2,E、E、F分别是棱AD、AA、AB的中点。(1)证明:直线EE//平面FCC;(2)求二面角B-FC-C的余弦值。证(1)略解EABCFE1A1B1C1D1DF1OP(2)因为AB=4,BC=CD=2,、F是棱AB的中点,所以BF

6、=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角,在△BCF为正三角形中,,在Rt△CC1F中,△OPF∽△CC1F,∵∴,在Rt△OPF中,,,所以二面角B-FC-C的余弦值为.练习2(2008天津)如图,在四棱锥中,底面是矩形.已知.(Ⅰ)证明平面;(Ⅱ)求异面直线与所成的角的大小;(Ⅲ)求二面角的大小.分析:本题是一道典型

7、的利用三垂线定理求二面角问题,在证明AD⊥平面PAB后,容易发现平面PAB⊥平面ABCD,点P就是二面角P-BD-A的半平面上的一个点,于是可过点P作棱BD的垂线,再作平面ABCD的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角的大小为)ABCEDP三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决例3(2008湖南)如图所示,四棱锥P-ABCD的底

8、面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.分析:本

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。