欢迎来到天天文库
浏览记录
ID:52568610
大小:93.00 KB
页数:4页
时间:2020-03-28
《《实数》小结与复习教学案.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《实数》小结与复习教学案教学目标1.进一步巩固实数的定义性质及其运算规律。2.熟练使用计算器求一些数值的估算值。3.能运用实数的运算解决简单的实际问题,提高对知识的应用能力。重点:无理数、平方根、算术平方根、立方根及实数的定义与性质,以及实数的运算法则。难点:利用平方根、算术平方根、立方根及实数运算法则的进行有关计算题目,特别是平方根与算术平方根的不同之处。教学过程本章的知识网络结构:知识梳理一.数的开方主要知识点:【1】平方根:1.如果一个数x的平方等于a,那么,这个数x就叫做a的平方根;也即,当时,我们称x是a的平方根,记做:。因
2、此:2.当a=0时,它的平方根只有一个,也就是0本身;3.当a>0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常记做:。当a<0时,也即a为负数时,它不存在平方根。例1.(1)的平方是64,所以64的平方根是;(2)的平方根是它本身。(3)若的平方根是±2,则x= ;的平方根是(4)当x时,有意义。(5)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?【算术平方根】:1.如果一个正数x的平方等于a,即,那么,这个正数x就叫做a的算术平方根,记为:“”,读作,“根号a”,其中,a称为被开方数。特别规定:
3、0的算术平方根仍然为0。2.算术平方根的性质:具有双重非负性,即:。3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两个互为相反数的值,表示为:。例2.(1)下列说法正确的是()A.1的立方根是B.C.的平方根是D.0没有平方根;(2)下列各式正确的是()A.B.C.D.(3)的算术平方根是。(4)若有意义,则___________。(5)已知△ABC的三边分别是且满足,求c的取值范围。【立方根】1.如果x的立方等于a,那
4、么,就称x是a的立方根,或者三次方根。记做:,读作,3次根号a。注意:这里的3表示的是开根的次数。一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。例3.(1)64的立方根是 (2)若,则b等于() A.1000000 B.1000 C.10 D.10000(3)下列说法中:①都是27的立方根,②,③的立方根是2,④。其中正确的有()A、1个B、2个C、3个D、4个【无理
5、数】1.无限不循环小数的小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。2.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。例4.(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。(填序号)(2)有五个数:0.125125…,0.1
6、010010001…,-,,其中无理数有()个A2B3C4D5【实数】1.有理数与无理数统称为实数。在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1。2.实数的性质:实数a的相反数是-a;实数a的倒数是(a≠0);实数a的绝对值
7、a
8、=,它的几何意义是:在数轴上的点到原点的距离。3.实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。(在数轴上,右边的数总是大于左边的数)。对于一些带根号的无
9、理数,我们可以通过比较它们的平方或者立方的大小。4.实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六种运算。运算法则和运算顺序与有理数的一致。例5.(1)下列说法正确的是();A、任何有理数均可用分数形式表示;B、数轴上的点与有理数一一对应;C、1和2之间的无理数只有;D、不带根号的数都是有理数。(2)a,b在数轴上的位置如图所示,则下列各式有意义的是()b0aA、B、C、D、(3)比较大小(填“>”或“<”).3,,,
此文档下载收益归作者所有