资源描述:
《2011高三物理 2力的合成与分解复习专题课件 新人教版.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高三物理高考复习力的合成与分解例14.在粗糙的水平面上放一物体A质量为M,A上再放一质量为m的物体B.A、B间的动摩擦因数为μ,施一水平力F于A,计算下列情况下A对B的摩擦力的大小:①A、B一起做匀速运动;②A、B一起以加速度a向右匀加速运动。摩擦力例16.用弹簧秤测定一个木块A和木块B间的动摩擦因数,有图示的两种装置.①为了能够用弹簧秤读数表示滑动摩擦力,图示装置的两种情况中,木块A是否都一定都要作匀速运动?②若木块A做匀速运动,甲图中A、B间的摩擦力大小是否等于拉力Fa的大小?③若A、B的重力分别为100N和150N,甲图中当物体
2、A被拉动时,弹簧秤的读数为60N,拉力Fa=110N,求A、B间的动摩擦因数.摩擦力1.合力与分力:如果一个力的作用效果与几个力的共同作效果相同,那么那一个力叫那几个力的合力,那几个力叫那一个力的分力。力的合成与分解合力与分力的关系:①等效性:根据需要可以将几个力合成一个力来等效替换,也可以将一个力分解为几个力来等效替换。②代替性:力在被其分力或合力代替后,就不能再参与力的计算③虚拟性:力的合力与分力,都不是实际存在的力力的合成与分解例1.如图所示,物体在五个共点恒力的作用下保持平衡。如果撤去力Fl,而保持其余四个力不变。这四个力的合
3、力的大小和方向是怎样的?F3F5F4F2F1合力与分力的等效替代性F例2.静止于粗糙的水平面上的斜劈A的斜面上,一物体B沿斜面向上做匀减速运动,那么,斜劈受到的水平面给的静摩擦力的方向怎样?ABvBαaxay力的合成与分解思考:①当B匀速下滑时,Ff=?;②当B减速下滑时,Ff方向?AαF例3.A的质量是m,放在质量为M,倾角为θ=30º的斜面B上,A、B始终相对静止,共同沿水平面向右运动。当a1=0时和a2=0.75g时,B对A的作用力FB各多大?ABvaFBGFB力的合成与分解2.力的合成:已知分力求合力叫力的合成,力的合成遵循平
4、行四边形定则。力的合成与分解公式法求解:说明:力的合成与分解的运算遵守平行四边形定则,它是物理学中一种化多为少、化繁为简、或两矢量不在同一条直线上分解在同一条直线上的研究方法.2.力的合成:已知分力求合力叫力的合成,力的合成遵循平行四边形定则。力的合成与分解作图法求解:[例题]力F1=45N,方向水平向右。力F2=60N,方向竖直向上。求这两个力的合力F的大小和方向。例4.若两个分力F1、F2夹角为α(α≠π),且α保持不变,则下列说法正确的是:()A.一个力增大,合力一定增大B.两个力都增大,合力一定增大C.两个力都增大,合力可能减
5、小D.两个力都增大,合力大小可能不变.解析:当α>90°时,画出合成的平行四边形如图示,F2F1一个力增大,合力先减小后增大,如图示,。两个力都增大,合力可能减小或不变,如图示,CDCOABD例5.竖直平面内的圆环上,等长的两细绳OA、OB结于圆心O,下悬重为G的物体(如图示),使OA绳固定不动,将OB绳的B点沿圆形支架从C点逐渐缓慢地顺时针方向转动到D点位置,在OB绳从竖直位置转动到水平位置的过程中,OA绳和OB绳上拉力的大小分别怎样变化?解:由力的平行四边形定则,将重力G分解,如图示,COABD例6.重G的光滑小球静止在固定斜面和
6、竖直挡板之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化?F1F2GF1逐渐变小,F2先变小后变大2.力的合成:已知分力求合力叫力的合成,力的合成遵循平行四边形定则。力的合成与分解三角形作图法求解:3.力的分解:已知合力求分力叫力的分解,力的分解遵循平行四边形定则。力的合成与分解①已知:合力的大小和方向,两个分力的方向,求:两个分力的大小。②已知:合力的大小和方向,一个分力的大小和方向,求:另一个分力的大小和方向。③已知:合力的大小和方向,一个分力的方向和另一个分力的大小,求:这个分力的
7、大小和另一个分力的方向。④已知:合力的大小和方向,两个分力的大小,求:两个分力的方向。①已知:合力的大小和方向,两个分力的方向,求:两个分力的大小。例7.轻绳AB总长l,用轻滑轮悬挂重G的物体。绳能承受的最大拉力是2G,将A端固定,将B端缓慢向右移动d而使绳不断,求d的最大可能值.GF1F2NAB②已知:合力的大小和方向,一个分力的大小和方向,求:另一个分力的大小和方向。F万是合力,F向心与F重是分力.若θ角已知,则重力的方向和大小可求.③已知:合力的大小和方向,一个分力的方向和另一个分力的大小,求:这个分力的大小和另一个分力的方向。
8、④已知:合力的大小和方向,两个分力的大小,求:两个分力的方向。已知:F=Mg=5N,T1=m1g=3N,T2=m2g=4N.求:θ1=?θ2=?4.正交分解合成法:原则是建立合适的坐标,减少力的分解个数例8.用两根绳子