欢迎来到天天文库
浏览记录
ID:52543839
大小:1.74 MB
页数:63页
时间:2020-04-10
《数学建模教程——模型05微分方程模型.ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库。
1、第五章微分方程模型5.1传染病模型5.2经济增长模型5.3正规战与游击战5.4药物在体内的分布与排除5.5香烟过滤嘴的作用5.6人口预测和控制5.7烟雾的扩散与消失5.8万有引力定律的发现动态模型描述对象特征随时间(空间)的演变过程分析对象特征的变化规律预报对象特征的未来性态研究控制对象特征的手段根据函数及其变化率之间的关系确定函数微分方程建模根据建模目的和问题分析作出简化假设按照内在规律或用类比法建立微分方程5.1传染病模型问题描述传染病的传播过程分析受感染人数的变化规律预报传染病高潮到来的时刻预防传染病蔓
2、延的手段按照传播过程的一般规律,用机理分析方法建立模型已感染人数(病人)i(t)每个病人每天有效接触(足以使人致病)人数为模型1假设若有效接触的是病人,则不能使病人数增加必须区分已感染者(病人)和未感染者(健康人)建模?模型2区分已感染者(病人)和未感染者(健康人)假设1)总人数N不变,病人和健康人的比例分别为2)每个病人每天有效接触人数为,且使接触的健康人致病建模~日接触率SI模型模型21/2tmii010ttm~传染病高潮到来时刻(日接触率)tmLogistic模型病人可以治愈!?t=tm,
3、di/dt最大模型3传染病无免疫性——病人治愈成为健康人,健康人可再次被感染增加假设SIS模型3)病人每天治愈的比例为~日治愈率建模~日接触率1/~感染期~一个感染期内每个病人的有效接触人数,称为接触数。模型3i0i0接触数=1~阈值感染期内有效接触感染的健康者人数不超过病人数1-1/i0模型2(SI模型)如何看作模型3(SIS模型)的特例idi/dt01>10ti>11-1/i0t1di/dt<0模型4传染病有免疫性——病人治愈后即移出感染系统,称移出者SIR模型假设1)总人数N不变
4、,病人、健康人和移出者的比例分别为2)病人的日接触率,日治愈率,接触数=/建模需建立的两个方程模型4SIR模型无法求出的解析解在相平面上研究解的性质模型4消去dtSIR模型相轨线的定义域相轨线11si0D在D内作相轨线的图形,进行分析si101D模型4SIR模型相轨线及其分析传染病蔓延传染病不蔓延s(t)单调减相轨线的方向P1s0imP1:s0>1/i(t)先升后降至0P2:s0<1/i(t)单调降至01/~阈值P3P4P2S0模型4SIR模型预防传染病蔓延的手段(日接触率)卫生水
5、平(日治愈率)医疗水平传染病不蔓延的条件——s0<1/的估计降低s0提高r0提高阈值1/降低(=/),群体免疫模型4SIR模型被传染人数的估计记被传染人数比例x<6、值Q(t)F为待定函数资金K(t)劳动力L(t)技术f(t)=f0模型假设静态模型每个劳动力的产值每个劳动力的投资z随着y的增加而增长,但增长速度递减yg(y)01.道格拉斯(Douglas)生产函数含义?Douglas生产函数QK~单位资金创造的产值QL~单位劳动力创造的产值~资金在产值中的份额1-~劳动力在产值中的份额更一般的道格拉斯(Douglas)生产函数1.Douglas生产函数w,r,K/L求资金与劳动力的分配比例K/L(每个劳动力占有的资金),使效益S最大资金和劳动力创造的效益资7、金来自贷款,利率r劳动力付工资w2)资金与劳动力的最佳分配(静态模型)3)经济(生产率)增长的条件(动态模型)要使Q(t)或Z(t)=Q(t)/L(t)增长,K(t),L(t)应满足的条件模型假设投资增长率与产值成正比(用一定比例扩大再生产)劳动力相对增长率为常数Bernoulli方程产值Q(t)增长dQ/dt>03)经济增长的条件劳动力增长率小于初始投资增长率每个劳动力的产值Z(t)=Q(t)/L(t)增长dZ/dt>03)经济增长的条件5.3正规战与游击战战争分类:正规战争,游击战争,混合战争只考虑双方兵8、力多少和战斗力强弱兵力因战斗及非战斗减员而减少,因增援而增加战斗力与射击次数及命中率有关建模思路和方法为用数学模型讨论社会领域的实际问题提供了可借鉴的示例第一次世界大战Lanchester提出预测战役结局的模型一般模型每方战斗减员率取决于双方的兵力和战斗力每方非战斗减员率与本方兵力成正比甲乙双方的增援率为u(t),v(t)f,g取决于战争类型x(t)~甲方兵力,y(t)~乙方兵力模型假设模型正规战争
6、值Q(t)F为待定函数资金K(t)劳动力L(t)技术f(t)=f0模型假设静态模型每个劳动力的产值每个劳动力的投资z随着y的增加而增长,但增长速度递减yg(y)01.道格拉斯(Douglas)生产函数含义?Douglas生产函数QK~单位资金创造的产值QL~单位劳动力创造的产值~资金在产值中的份额1-~劳动力在产值中的份额更一般的道格拉斯(Douglas)生产函数1.Douglas生产函数w,r,K/L求资金与劳动力的分配比例K/L(每个劳动力占有的资金),使效益S最大资金和劳动力创造的效益资
7、金来自贷款,利率r劳动力付工资w2)资金与劳动力的最佳分配(静态模型)3)经济(生产率)增长的条件(动态模型)要使Q(t)或Z(t)=Q(t)/L(t)增长,K(t),L(t)应满足的条件模型假设投资增长率与产值成正比(用一定比例扩大再生产)劳动力相对增长率为常数Bernoulli方程产值Q(t)增长dQ/dt>03)经济增长的条件劳动力增长率小于初始投资增长率每个劳动力的产值Z(t)=Q(t)/L(t)增长dZ/dt>03)经济增长的条件5.3正规战与游击战战争分类:正规战争,游击战争,混合战争只考虑双方兵
8、力多少和战斗力强弱兵力因战斗及非战斗减员而减少,因增援而增加战斗力与射击次数及命中率有关建模思路和方法为用数学模型讨论社会领域的实际问题提供了可借鉴的示例第一次世界大战Lanchester提出预测战役结局的模型一般模型每方战斗减员率取决于双方的兵力和战斗力每方非战斗减员率与本方兵力成正比甲乙双方的增援率为u(t),v(t)f,g取决于战争类型x(t)~甲方兵力,y(t)~乙方兵力模型假设模型正规战争
此文档下载收益归作者所有