欢迎来到天天文库
浏览记录
ID:52513655
大小:1.37 MB
页数:32页
时间:2020-04-09
《用数学归纳法证明不等式课件(人教A选修4-5).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、[读教材·填要点]贝努利(Bernoulli)不等式如果x是实数,且x>-1,x≠0,n为大于1的自然数,那么有(1+x)n>.1+nx[小问题·大思维]在贝努利不等式中,指数n可以取任意实数吗?提示:可以.但是贝努利不等式的体现形式有所变化.事实上:当把正整数n改成实数α后,将有以下几种情况出现:(1)当α是实数,并且满足α>1或者α<0时,有(1+x)α≥1+αx(x>-1).(2)当α是实数,并且满足0<α<1时,用(1+x)α≤1+αx(x>-1).[研一题][悟一法][通一类][研一题][精讲详析]本题考查数学归纳法的应用,解答本题需要先对n取特值,猜想Pn与Qn的大
2、小关系,然后利用数学归纳法证明.(1)当n=1,2时,Pn=Qn.(2)当n≥3时,(以下再对x进行分类).①若x∈(0,+∞),显然有Pn>Qn.②若x=0,则Pn=Qn.③若x∈(-1,0),则P3-Q3=x3<0,所以P33、与Qn的大小关系,这就要求我们在探索大小关系时,不能只顾“n”,而忽视其他变量(参数)的作用.[通一类]2.已知数列{an},{bn}与函数f(x),g(x),x∈R,满足条件:b1=b,an=f(bn)=g(bn+1)(n∈N*).若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明:对任意n∈N*,an+14、)<1,b2=f(a1)5、出结论,然后用数学归纳法证明.这种分析问题和解决问题的思路是非常重要的,特别是在求解存在型或探索型问题时.[通一类]解:猜想当t=3时,对一切正整数n使3n>n2成立.下面用数学归纳法进行证明.当n=1时,31=3>1=12,命题成立.假设n=k(k≥1,k∈N+)时,3k>k2成立,则有3k≥k2+1.对n=k+1,3k+1=3·3k=3k+2·3k≥k2+2(k2+1)>3k2+1.∵(3k2+1)-(k+1)2=2k2-2k=2k(k-1)≥0,∴3k+1>(k+1)2,∴对n=k+1,命题成立.由上知,当t=3时,对一切n∈N+,命题都成立.本课时考点常与数列问题相结合6、以解答题的形式考查数学归纳法的应用.2012年全国卷将数列、数学归纳法与直线方程相结合考查,是高考模拟命题的一个新亮点.[考题印证](2012·大纲全国卷)函数f(x)=x2-2x-3.定义数列{xn}如下:x1=2,xn+1是过两点P(4,5)、Qn(xn,f(xn))的直线PQn与x轴交点的横坐标.(1)证明:2≤xn<xn+1<3;(2)求数列{xn}的通项公式.[命题立意]本题考查数学归纳法证明不等式问题,考查学生推理论证的能力.点击下图片进入:
3、与Qn的大小关系,这就要求我们在探索大小关系时,不能只顾“n”,而忽视其他变量(参数)的作用.[通一类]2.已知数列{an},{bn}与函数f(x),g(x),x∈R,满足条件:b1=b,an=f(bn)=g(bn+1)(n∈N*).若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明:对任意n∈N*,an+14、)<1,b2=f(a1)5、出结论,然后用数学归纳法证明.这种分析问题和解决问题的思路是非常重要的,特别是在求解存在型或探索型问题时.[通一类]解:猜想当t=3时,对一切正整数n使3n>n2成立.下面用数学归纳法进行证明.当n=1时,31=3>1=12,命题成立.假设n=k(k≥1,k∈N+)时,3k>k2成立,则有3k≥k2+1.对n=k+1,3k+1=3·3k=3k+2·3k≥k2+2(k2+1)>3k2+1.∵(3k2+1)-(k+1)2=2k2-2k=2k(k-1)≥0,∴3k+1>(k+1)2,∴对n=k+1,命题成立.由上知,当t=3时,对一切n∈N+,命题都成立.本课时考点常与数列问题相结合6、以解答题的形式考查数学归纳法的应用.2012年全国卷将数列、数学归纳法与直线方程相结合考查,是高考模拟命题的一个新亮点.[考题印证](2012·大纲全国卷)函数f(x)=x2-2x-3.定义数列{xn}如下:x1=2,xn+1是过两点P(4,5)、Qn(xn,f(xn))的直线PQn与x轴交点的横坐标.(1)证明:2≤xn<xn+1<3;(2)求数列{xn}的通项公式.[命题立意]本题考查数学归纳法证明不等式问题,考查学生推理论证的能力.点击下图片进入:
4、)<1,b2=f(a1)5、出结论,然后用数学归纳法证明.这种分析问题和解决问题的思路是非常重要的,特别是在求解存在型或探索型问题时.[通一类]解:猜想当t=3时,对一切正整数n使3n>n2成立.下面用数学归纳法进行证明.当n=1时,31=3>1=12,命题成立.假设n=k(k≥1,k∈N+)时,3k>k2成立,则有3k≥k2+1.对n=k+1,3k+1=3·3k=3k+2·3k≥k2+2(k2+1)>3k2+1.∵(3k2+1)-(k+1)2=2k2-2k=2k(k-1)≥0,∴3k+1>(k+1)2,∴对n=k+1,命题成立.由上知,当t=3时,对一切n∈N+,命题都成立.本课时考点常与数列问题相结合6、以解答题的形式考查数学归纳法的应用.2012年全国卷将数列、数学归纳法与直线方程相结合考查,是高考模拟命题的一个新亮点.[考题印证](2012·大纲全国卷)函数f(x)=x2-2x-3.定义数列{xn}如下:x1=2,xn+1是过两点P(4,5)、Qn(xn,f(xn))的直线PQn与x轴交点的横坐标.(1)证明:2≤xn<xn+1<3;(2)求数列{xn}的通项公式.[命题立意]本题考查数学归纳法证明不等式问题,考查学生推理论证的能力.点击下图片进入:
5、出结论,然后用数学归纳法证明.这种分析问题和解决问题的思路是非常重要的,特别是在求解存在型或探索型问题时.[通一类]解:猜想当t=3时,对一切正整数n使3n>n2成立.下面用数学归纳法进行证明.当n=1时,31=3>1=12,命题成立.假设n=k(k≥1,k∈N+)时,3k>k2成立,则有3k≥k2+1.对n=k+1,3k+1=3·3k=3k+2·3k≥k2+2(k2+1)>3k2+1.∵(3k2+1)-(k+1)2=2k2-2k=2k(k-1)≥0,∴3k+1>(k+1)2,∴对n=k+1,命题成立.由上知,当t=3时,对一切n∈N+,命题都成立.本课时考点常与数列问题相结合
6、以解答题的形式考查数学归纳法的应用.2012年全国卷将数列、数学归纳法与直线方程相结合考查,是高考模拟命题的一个新亮点.[考题印证](2012·大纲全国卷)函数f(x)=x2-2x-3.定义数列{xn}如下:x1=2,xn+1是过两点P(4,5)、Qn(xn,f(xn))的直线PQn与x轴交点的横坐标.(1)证明:2≤xn<xn+1<3;(2)求数列{xn}的通项公式.[命题立意]本题考查数学归纳法证明不等式问题,考查学生推理论证的能力.点击下图片进入:
此文档下载收益归作者所有