全称量词,特称量词.ppt

全称量词,特称量词.ppt

ID:52511747

大小:689.00 KB

页数:34页

时间:2020-04-09

全称量词,特称量词.ppt_第1页
全称量词,特称量词.ppt_第2页
全称量词,特称量词.ppt_第3页
全称量词,特称量词.ppt_第4页
全称量词,特称量词.ppt_第5页
资源描述:

《全称量词,特称量词.ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库

1、1.4.1全称量词1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.2.会判定全称命题和特称命题的真假.1.全称量词和存在量词的含义.(难点)2.全称命题和特称命题真假的判定.(重点)全称量词下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)x>3(2)2x+1是整数(3)对所有的xR,x>3(4)对任意一个xZ,2x+1是整数是是不是不是(3)在(1)的基础上,用短语”对所有的”对变量x进行限定;关系:(3)(4)全称命题(4)在(2)的基础上,用短语”对任意一个”对变量x进行

2、限定.一.全称命题1.全称量词及表示:短语“对所有的”、“对任意一个”、“对一切”、“对每一个”、“任给”、“所有的”在逻辑中通常叫全称量词。定义:表示:用符号“”表示2.全称命题及表示:定义:含有全称量词的命题,叫全称命题。全称命题举例:命题:对任意的n∈Z,2n+1是奇数;所有的正方形都是矩形。通常,将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示,那么,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:读作“对任意x属于M,有p(x)成立”。全称命题的符号表示:

3、一.全称命题命题:对任意的x∈R,x>3;例3.判断下列全称命题的真假(1)所有的素数是奇数;(2)xR,x2+1≥1(3)对每一个无理数x,x2也是无理数解:(1)∵2是素数,但不是奇数.∴全称命题(1)是假命题(2)∵xR,x2≥0,从而x2+1≥1∴全称命题(2)是真命题(3)∵是无理数,但()2=2是有理数∴全称命题(3)是假命题二.如何判断全称命题的真假二.如何判断全称命题的真假方法:若判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证P(x)成立;若判定一个全称命题是假命题,只要能举出集合

4、M中的一个x=x0,使得P(x)不成立即可。练习.判断命题的真假(1)xR,x2+x+1>0(2)xQ,x2+0.5x+1是有理数(3)xR,x2-3x+2=0真真假(x=1或2时才成立)小结一.全称命题1.全称量词及表示:2.全称命题及表示:二.如何判断全称命题的真假若判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证P(x)成立;若判定一个全称命题是假命题,只要能举出集合M中的一个x=x0,使得P(x)不成立即可。1.4.2存在量词存在量词下列语句是命题吗?(1)与(3),(2)与(4)之间有什么

5、关系?(1)2x+1=3(2)x能被2和3整除;(3)存在一个x∈R,使2x+1=3;(4)至少有一个x∈Z,x能被2和3整除.(3)在(1)的基础上,用短语“存在一个”对变量x的取值进行限定,使(3)变成了可以判断真假的语句;不是不是是是(4)在(2)的基础上,用“至少有一个”对变量x的取值进行限定,从而使(4)变成了可以判断真假的语句.关系:(3)(4)特称命题短语“存在一个”、“至少有一个”、“有些”、“有一个”、“对某个”、“有的”在逻辑中通常叫做存在量词。特称命题“存在M中的一个x,使p(x)成立”可

6、用符号简记为∃x∈M,p(x).一.特称命题1.存在量词及表示:定义:用符号“∃”表示,含有存在量词的命题,叫做特称命题.表示:2.特称命题及表示:定义:表示:读作:“存在一个x属于M,使p(x)成立”.例如:命题(1)有的平行四边形是菱形;((2)有一个素数不是奇数都是特称命题.例1设q(x):x2=x,使用不同的表达方法写出特称命题“∃x∈R,q(x)”解:存在实数x,使x2=x成立至少有一个x∈R,使x2=x成立对有些实数x,使x2=x成立有一个x∈R,使x2=x成立对某个x∈R,使x2=x成立例2下列语

7、句是不是全称或特称命题(1)有一个实数a,a不能取对数(2)所有不等式的解集A,都是A⊆R(3)三角函数都是周期函数吗?(4)有的向量方向不定特称命题全称命题不是命题特称命题例3判断下列特称命题的真假:(1)有一个实数x,使x2+2x+3=0;(2)存在两个相交平面垂直于同一条直线;(3)有些整数只有两个正因数.(1)由于∀x∈R,x2+2x+3=(x+1)2+2≥2,因此使x2+2x+3=0的实数x不存在.解:(2)由于垂直于同一条直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一条直线.所以,特

8、称命题(1)是假命题.所以,特称命题(2)是假命题.二.如何判断特称命题的真假要判断特称命题“∃x∈M,p(x)”是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可.如何判断特称命题的真假如果在集合M中,使p(x)成立的元素x不存在,那么这个特称命题是假命题.(3)由于存在整数3只有两个正因数1和3,所以特称命题(3)是真命题.方法:练习判断下列命题的真假(1)∃α,β∈R

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。