六课时26.3实际问题与二次函数.ppt

六课时26.3实际问题与二次函数.ppt

ID:52356509

大小:1.84 MB

页数:21页

时间:2020-04-04

六课时26.3实际问题与二次函数.ppt_第1页
六课时26.3实际问题与二次函数.ppt_第2页
六课时26.3实际问题与二次函数.ppt_第3页
六课时26.3实际问题与二次函数.ppt_第4页
六课时26.3实际问题与二次函数.ppt_第5页
资源描述:

《六课时26.3实际问题与二次函数.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、26.3实际问题与二次函数(1)水柱形成形状跳运时人在空中经过的路径篮球在空中经过的路径跳水运动员在空中经过的路径何时获得最大利润?何时橙子总产量最大?养鸡场面积何时最大?同学们,今天就让我们一起去体会生活中的数学给我们带来的乐趣吧!26.3实际问题与二次函数--何时获得最大利润-202462-4xy⑴若-3≤x≤3,该函数的最大值、最小值分别为()、()。⑵又若0≤x≤3,该函数的最大值、最小值分别为()、()。求函数的最值问题,应注意什么?55555132、图中所示的二次函数图像的解析式为:1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;⑵y

2、=-x2+4x某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?何时获得最大利润某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况先来

3、看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖件,实际卖出件,销额为元,买进商品需付元因此,所得利润为元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即(0≤X≤30)何时获得最大利润(0≤X≤30)可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.所以,当定价为65元时,利润最大,最大

4、利润为6250元在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润答:定价为元时,利润最大,最大利润为6050元做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?(0≤x≤20)(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。解这类题目的一般步骤

5、我们还曾经利用列表的方法得到一个数据,现在请你验证一下你的猜测(增种多少棵橙子树时,总产量最大?)是否正确.与同伴进行交流你是怎么做的.何时橙子总产量最大还记得本章一开始涉及的“种多少棵橙子树”的问题吗?想一想驶向胜利的彼岸何时橙子总产量最大某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.做一做(1)问题中有那些变量?其中哪些是自变量?哪些是因变量?驶向胜利的彼岸(2)假设果园增种x棵橙子树,那么果园共有

6、多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.何时橙子总产量最大果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量想一想驶向胜利的彼岸y=(100+x)(600-5x)=-5x²+100x+60000.在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?2.利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系?何时橙子总产量最大1.利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.议一议驶向胜利的彼岸3.增种多少棵橙子,可以使橙子的总产量在60

7、400个以上?一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。问此球能否投中?3米8米4米4米如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:(0≤x≤8)(0≤x≤8)∵篮圈中心距离地面3米∴此球不能投中8(4,4)若假设出手的角度和力度都不变,则如何才能使此球命中?探究(1)跳得高一点(2)向前平移一点yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球

8、投入篮圈?0123456789yX(8,3)(5,4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。