高等数学(同济大学)课件上第2-3高阶导数.ppt

高等数学(同济大学)课件上第2-3高阶导数.ppt

ID:52336012

大小:680.00 KB

页数:19页

时间:2020-04-04

高等数学(同济大学)课件上第2-3高阶导数.ppt_第1页
高等数学(同济大学)课件上第2-3高阶导数.ppt_第2页
高等数学(同济大学)课件上第2-3高阶导数.ppt_第3页
高等数学(同济大学)课件上第2-3高阶导数.ppt_第4页
高等数学(同济大学)课件上第2-3高阶导数.ppt_第5页
资源描述:

《高等数学(同济大学)课件上第2-3高阶导数.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二、高阶导数的运算法则第三节一、高阶导数的概念机动目录上页下页返回结束高阶导数第二章一、高阶导数的概念速度即加速度即引例:变速直线运动机动目录上页下页返回结束定义.若函数的导数可导,或即或类似地,二阶导数的导数称为三阶导数,阶导数的导数称为n阶导数,或的二阶导数,记作的导数为依次类推,分别记作则称机动目录上页下页返回结束设求解:依次类推,例1.思考:设问可得机动目录上页下页返回结束例2.设求解:特别有:解:规定0!=1思考:例3.设求机动目录上页下页返回结束例4.设求解:一般地,类似可证:机动目录上页下页返回结束例5.设解:机动目录上页下页返回结束例6.设求使

2、存在的最高分析:但是不存在.2又阶数机动目录上页下页返回结束二、高阶导数的运算法则都有n阶导数,则(C为常数)莱布尼兹(Leibniz)公式及设函数推导目录上页下页返回结束用数学归纳法可证莱布尼兹公式成立.机动目录上页下页返回结束例7.求解:设则代入莱布尼兹公式,得机动目录上页下页返回结束例8.设求解:即用莱布尼兹公式求n阶导数令得由得即由得机动目录上页下页返回结束内容小结(1)逐阶求导法(2)利用归纳法(3)间接法——利用已知的高阶导数公式(4)利用莱布尼兹公式高阶导数的求法如,机动目录上页下页返回结束思考与练习1.如何求下列函数的n阶导数?解:解:机动目录

3、上页下页返回结束(3)提示:令原式原式机动目录上页下页返回结束解:机动目录上页下页返回结束2.(填空题)(1)设则提示:各项均含因子(x–2)(2)已知任意阶可导,且时提示:则当机动目录上页下页返回结束3.试从导出解:同样可求(见P101题4)作业P1011(9),(12);3;4(2);8(2),(3);9(2),(3)第四节目录上页下页返回结束解:设求其中f二阶可导.备用题机动目录上页下页返回结束

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。