资源描述:
《线性代数习题1.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、习题一21.6设方阵A满足方程AAIO2,证明A及11AI2都可逆,并求A及AI2.解2AAI2,AAI2I,1AAII,211AAI.2方法12AIAIAAIII236264I1AI23AII,411AI23AI.4方法22AIA2,1AI22121AAI2112AAI2AIAI224413IA44231.10设A110,ABA2B
2、,求B.123解AB2BA,或A2IBA,1BAIA2122342311011012112314342315311016412338629621290k01.11设Λ1,(1)证明Λk1;0k2021kk1(2)设APΛP,证明APΛP.证(1)(2)kk1AP
3、ΛP1111PΛPPΛPPΛPPΛP1111PΛPPΛPPΛΛPPΛPk1PΛP1.13*证明下列等式2aa213(1)abab1ab;2bb21a11111bxaxbca111bc2(2)abxaxbc222221xabc222abxaxbc33333abc333证明(1)2aa21abab12bb21aabab0abab1bbaba0aabab2a1abbbabab13ab(2)把第1列,第2列的元看成两项之和,a1111
4、1bxaxbca22222bxaxbca33333bxaxbca111bcbxaxc111a222bcbxaxc222a333bcbxaxc333abc111abc1112abcxabc222222abc333abc333abc11121xabc222abc3331.16解下列矩阵方程142031(3)X121101解(3)11143120X12011111243110
5、62110112111121212301041.17设A是??阶矩阵,A为伴随矩阵,证明(1)若A0,则A0;n1(2)AA.证明(1)假设A0,那么A可逆.AAAI,1两边右乘A得11AAA0AO.因此AOO,AO0,与假设矛盾.(2)当A0时,依(1)的结果,AA0.以下设A0.AAAI,取行列式得nAAA,或n1AA.11.21设3阶方阵A的伴随矩阵为A,且A,求2132AA.
6、解132AA111111A2AAAA3332211AA3333221A2331627k1.22设A为??阶方阵,AO,k,求证IA可逆,并写出逆矩阵的表达式.证明kkIIA21kIAIAAA121k所以IAIAAA.OA1.23设分块阵X,其中A,B可逆,求X1.BOCD解法1设X1,这里X1的分块方法与X的FG分块方法相同.OACDAFAGXX
7、1BOFGBCBDIOOI所以AFI(1)AGO(2)BCO(3)BDI(4)11由(1)式得FA.由(2)式得GAOO.由11(3)式得CBOO.由(4)式得DB.因此OB11X.AO1解法2OAIOBOOIBOOIOAIOIOOB1OIA1O因此OB11XAO10a100000a2