欢迎来到天天文库
浏览记录
ID:52241006
大小:21.00 KB
页数:1页
时间:2020-03-25
《双曲线的几何性质说课稿.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“双曲线的几何性质”说课稿横林中学魏民 一、 教材分析1、 教材的地位与作用本节课是学生在已掌握双曲线的定义和标准方程后,在此基础上,由标准方程研究其几何性质。《平面解析几何》教学参考书中明确指出:根据曲线的方程,研究曲线的几何性质并正确作图,是解析几何的基本问题之一,也可以说是解析几何的目的。因此,本节的内容在《圆锥曲线》这一章中,是非常重要的,它是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质,为学生进一步学习数学、物理、
2、化学等打下良好基础。2、 教学目标的确定及依据《平面解析几何》课本中的引言明确指出:“平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。《平面解析几何》教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课将要完成的教学目标。⑴知识目标:①使学生理解和掌握双曲线的范围,对称性,顶点等性质。②理解渐近线的证明方法,能够根据双曲线方程求出双曲线的顶点坐标、实、虚轴长,渐近线的方程和离心率的大小。③理解离心率和双曲线
3、形状间的变化关系 ⑵能力目标:培养学生的观察能力,想象能力,数形结合能力,和逻辑推理能力,以及类比的学习方法。 ⑶德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。3、重点、难点的确定及依据教学经验使我认识到,学生对渐近线的证明方法接受、理解和掌握有一定的困难。因此,在教学过程中要把渐近线的证明方法作为重点讲解的突破口,充分暴露思维过程,培养学生的创造性思维。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线,离
4、心率这两个性质作为本节课的重点。
此文档下载收益归作者所有