欢迎来到天天文库
浏览记录
ID:52230174
大小:1.02 MB
页数:11页
时间:2020-03-25
《高中数学公式大全(文科).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中数学常用公式及结论1元素与集合的关系:,.2集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个.3二次函数的解析式的三种形式:(1)一般式;(2)顶点式;(当已知抛物线的顶点坐标时,设为此式)(3)零点式;(当已知抛物线与轴的交点坐标为时,设为此式)(4)切线式:。(当已知抛物线与直线相切且切点的横坐标为时,设为此式)4真值表:同真且真,同假或假5四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题 互逆 逆命题若p则q
2、若q则p 互 互 互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p充要条件:(1)、,则P是q的充分条件,反之,q是p的必要条件;(2)、,且q≠>p,则P是q的充分不必要条件;(3)、p≠>p,且,则P是q的必要不充分条件;4、p≠>p,且q≠>p,则P是q的既不充分又
3、不必要条件。6函数单调性:增函数:(1)、文字描述是:y随x的增大而增大。(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在xD上是增函数。D则就是f(x)的递增区间。减函数:(1)、文字描述是:y随x的增大而减小。(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在xD上是减函数。D则就是f(x)的递减区间。单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;注:上
4、述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。复合函数的单调性:函数单调单调性内层函数↓↑↑↓外层函数↓↑↓↑复合函数↑↑↓↓等价关系:(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.7函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数:定义:在前提条件下,若有,则f(x)就是奇函数。性质:(1)、奇函数的图象关于原点对称;(2)、奇函数在x>0和x<0上具有相同的单调区间;(3)、定义在R上的奇函数,有f(0)=0.偶函
5、数:定义:在前提条件下,若有,则f(x)就是偶函数。性质:(1)、偶函数的图象关于y轴对称;(2)、偶函数在x>0和x<0上具有相反的单调区间;奇偶函数间的关系:(1)、奇函数·偶函数=奇函数;(2)、奇函数·奇函数=偶函数;(3)、偶奇函数·偶函数=偶函数;(4)、奇函数±奇函数=奇函数(也有例外得偶函数的)(5)、偶函数±偶函数=偶函数;(6)、奇函数±偶函数=非奇非偶函数奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这
6、个函数是偶函数.8函数的周期性:定义:对函数f(x),若存在T0,使得f(x+T)=f(x),则就叫f(x)是周期函数,其中,T是f(x)的一个周期。周期函数几种常见的表述形式:f(x+T)=-f(x),此时周期为2T;9常见函数的图像:10对于函数(),恒成立,则函数的对称轴是;两个函数与的图象关于直线对称.11分数指数幂与根式的性质:(1)(,且).(2)(,且).(3).(4)当为奇数时,;当为偶数时,.12指数式与对数式的互化式:.指数性质:(1)1、;(2)、();(3)、(4)、;(5)、;指数函数:(1)、在定义
7、域内是单调递增函数;(2)、在定义域内是单调递减函数。注:指数函数图象都恒过点(0,1)对数性质:(1);(2);(3);(4);(5);(6);(7)对数函数:(1)、在定义域内是单调递增函数;(2)、在定义域内是单调递减函数;注:对数函数图象都恒过点(1,0)(3)、(4)、或13对数的换底公式:(,且,,且,).对数恒等式:(,且,).推论(,且,).14对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1);(2);(3);(4)。15等差数列:通项公式:(1),其中为首项,d为公差,n为项数,为末项。(2)推
8、广:(3)(注:该公式对任意数列都适用)前n项和:(1);其中为首项,n为项数,为末项。(2)(3)(注:该公式对任意数列都适用)(4)(注:该公式对任意数列都适用)(5)1+2+3+…+n=等比数列:通项公式:(1),其中为首项,n为项数,q为公比。(2)推广:(3)(注:
此文档下载收益归作者所有