新课标高中数学必修2知识点总结经典.doc

新课标高中数学必修2知识点总结经典.doc

ID:52213047

大小:1.05 MB

页数:9页

时间:2020-03-25

新课标高中数学必修2知识点总结经典.doc_第1页
新课标高中数学必修2知识点总结经典.doc_第2页
新课标高中数学必修2知识点总结经典.doc_第3页
新课标高中数学必修2知识点总结经典.doc_第4页
新课标高中数学必修2知识点总结经典.doc_第5页
资源描述:

《新课标高中数学必修2知识点总结经典.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、新课标高中数学必修2知识点总结经典第一章空间几何体1.1空间几何体的结构1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边

2、形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面

3、是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。1、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。※空间几何体的结构特征:面(侧面

4、、上底面、下底面)、棱、顶点、轴1.2空间几何体的三视图和直观图1、中心投影与平行投影中心投影:把光由一点向外散射形成的投影叫做中心投影。平行投影:在一束平行光照射下形成的投影叫做平行投影。2、三视图正视图:从前往后侧视图:从左往右俯视图:从上往下画三视图的原则:长对齐、高对齐、宽相等3、直观图:斜二测画法斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3空间几何体的表

5、面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V=;S=第二章点、直线、平面之间的位置关系及其论证1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。若A,B,C不共线,则A,B,C确定平面推论1:过直线的直线外一点有且只有一个平面若,则点A和确定平面推论2:过两条相交直线有且只有一个平面若,则确定

6、平面推论3:过两条平行直线有且只有一个平面若,则确定平面公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。6、线线位置关系:平行、相交、异面。(1)没有任何公共点的两条直线平行(2)有

7、一个公共点的两条直线相交(3)不同在任何一个平面内的两条直线叫异面直线7、线面位置关系:直线在平面内、平行、相交8、面面位置关系:平行、相交。9、线面平行:(即直线与平面无任何公共点)⑴判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。(只需在平面内找一条直线和平面外的直线平行就可以)证明两直线平行的主要方法是:①三角形中位线定理:三角形中位线平行并等于底边的一半;②平行四边形的性质:平行四边形两组对边分别平行;③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线

8、平行;④平行线的传递性:⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行;⑥垂直于同一平面的两直线平行;⑵直线与平面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。