资源描述:
《题型训练14 函数与方程.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、要点梳理1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使_______成立的实数x叫做函数y=f(x)(x∈D)的零点.题型训练14函数与方程f(x)=0基础知识自主学习(2)几个等价关系方程f(x)=0有实数根函数y=f(x)的图象与_____有交点函数y=f(x)有_______.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有_________________,那么函数y=f(x)在区间________内有零点,即存在c∈(a,b),使得_________,这个____也就是f
2、(x)=0的根.f(a)·f(b)<0(a,b)f(c)=0cx轴零点2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点__________________________无交点零点个数______________(x1,0),(x2,0)(x1,0)无一个两个3.二分法(1)二分法的定义对于在区间[a,b]上连续不断且_____________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__________,使区间的两个端点逐步逼近_____,进而得到零点近似值的方法叫
3、做二分法.(2)用二分法求函数f(x)零点近似值的步骤第一步,确定区间[a,b],验证______________,给定精确度;第二步,求区间(a,b)的中点x1;f(a)·f(b)<0一分为二零点f(a)·f(b)<0第三步,计算_______:①若_______,则x1就是函数的零点;②若_____________,则令b=x1(此时零点x0∈(a,x1));③若______________,则令a=x1(此时零点x0∈(x1,b));第四步,判断是否达到精确度:即若
4、a-b
5、<,则得到零点近似值a(或b);否则重复第二、三、四步.f(x1)f(a)·f(x1)<0
6、f(x1)·f(b)<0f(x1)=0温馨提示:对函数零点存在的判断中,必须强调:(1)f(x)在[a,b]上连续;(2)f(a)·f(b)<0;(3)在(a,b)内存在零点.事实上,这是零点存在的一个充分条件,但不必要.题型一零点的判断1、判断下列函数在给定区间上是否存在零点.(1)f(x)=x2-3x-18,x∈[1,8];(2)f(x)=log2(x+2)-x,x∈[1,3].第(1)问利用零点的存在性定理或直接求出零点,第(2)问利用零点的存在性定理或利用两图象的交点来求解.思维启迪题型分类深度剖析解(1)方法一∵f(1)=12-3×1-18=-20<0,f(8
7、)=82-3×8-18=22>0,∴f(1)·f(8)<0,故f(x)=x2-3x-18,x∈[1,8]存在零点.方法二令f(x)=0,得x2-3x-18=0,x∈[1,8].∴(x-6)(x+3)=0,∴x=6∈[1,8],x=-3[1,8],∴f(x)=x2-3x-18,x∈[1,8]有零点.(2)方法一∵f(1)=log23-1>log22-1=0,f(3)=log25-38、以看出当1≤x≤3时,两图象有一个交点,因此f(x)=log2(x+2)-x,x∈[1,3]存在零点.函数的零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件.探究提高题型二函数零点所在区间的判断2.设f(x)=3x-x2,则在下列区间中,使函数f(x)有零点的区间是()A.[0,1]B.[1,2]C.[-2,-1]D.[-1,0]解析∵f(-1)=3-1-(-1)2=f(0)=30-02=1>0,∴f(-1)·f(0)<0,∴有零点的区间是[-1,0].D3.(2009·天津理,4)设函数(x>
9、0),则y=f(x)()A.在区间(1,e)内均有零点B.在区间(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.在区间内无零点,在区间(1,e)内有零点解析因为因此f(x)在内无零点.因此f(x)在(1,e)内有零点.答案D题型三函数零点个数的判断4.函数f(x)=3ax-2a+1在[-1,1]上存在一个零点,则a的取值范围是()A.B.a≤1C.D.解析f(x)=3ax-2a+1在[-1,1]上存在一个零点,则f(-1)·f(1)≤0,即D5、求函数y=lnx+2x-6的零点个数.该问题转化为求函数y=lnx与y=6