高考数学椭圆讲练

高考数学椭圆讲练

ID:5210187

大小:894.50 KB

页数:11页

时间:2017-12-06

高考数学椭圆讲练_第1页
高考数学椭圆讲练_第2页
高考数学椭圆讲练_第3页
高考数学椭圆讲练_第4页
高考数学椭圆讲练_第5页
资源描述:

《高考数学椭圆讲练》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、椭圆(一)椭圆及其标准方程1.椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于

2、

3、这个条件不可忽视.若这个距离之和小于

4、

5、,则这样的点不存在;若距离之和等于

6、

7、,则动点的轨迹是线段.2.椭圆的标准方程:(>>0),(>>0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.4.求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.(二)椭圆的简单几何性质1.椭圆的几何性质:设椭圆方程为(>>0).⑴范围:-a≤x≤a,-b≤x≤b

8、,所以椭圆位于直线x=和y=所围成的矩形里.⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长.所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.2.椭圆的第二定义⑴定义:平面内动点M与一个顶点的距离和它到一

9、条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆(>>0)的参数方程为(θ为

10、参数).说明:⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换.椭圆的参数方程是.5.椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6.椭圆的切线方程(1)椭圆上一点处的切线方程是.(2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是7.直线与椭圆相交的弦长公式若斜率为k的直线被圆锥曲线所截得的弦为AB,A、B两点分别为A(x1,y1)、B(x2,y2),则弦长,这里体现了解析几何“设而不求”的解题思想;

11、高考题型解析(1)第一定义——把椭圆从圆中分离椭圆从圆(压缩)变形而来,从而使得椭圆与圆相关而又相异.它从圆中带来了中心和定长,但又产生了2个新的定点——焦点.准确、完整地掌握椭圆的定义,是学好椭圆、并进而学好圆锥曲线理论的基础.【例1】若点M到两定点F1(0,-1),F2(0,1)的距离之和为2,则点M的轨迹是().椭圆.直线.线段.线段的中垂线.【解析】注意到且故点M只能在线段上运动,即点M的轨迹就是线段,选C.【评注】椭圆的定义中有一个隐含条件,那就是动点到两定点的距离之和必须大于两定点间的距离.忽视这一点,就会错误地选A.(2)勾股数组——椭圆

12、方程的几何特征椭圆的长、短半轴a、b和半焦距c,满足.在a、b、c三个参数中,只要已知或求出其中的任意两个,便可以求出第3个,继而写出椭圆方程和它的一切特征数值.椭圆方程的标准式有明显的几何特征,这个几何特征就反映在这个勾股数组上.所谓解椭圆说到底是解这个勾股数组.【例2】已知圆,圆内一定点(3,0),圆过点且与圆内切,求圆心的轨迹方程.【解析】如图,设两圆内切于C,动点P(x,y),则A、P、C共线.连AC、PB,∵为定长,而A(-3,0),B(3,0)为定点,∴圆心的轨迹是椭圆.且.所求轨迹方程为:.(3)第二定义——椭圆的个性向圆锥曲线共性加盟如

13、果说椭圆第一定义的主要功能是导出了椭圆的方程,那么椭圆的第二定义则给椭圆及其方程给出了深刻的解释.根据这个解释,我们可以方便地解决许多关于椭圆的疑难问题.【例3】已知椭圆,能否在此椭圆位于y轴左侧部分上找一点P,使它到左准线的距离是它到两焦点F1,F2距离的比例中项.【解析】由椭圆方程知:.椭圆的左准线为:.设存在椭圆上一点P(x,y)(x<0)符合所设条件.作PH⊥l于H.令,则有:.但是.∴.又.这与矛盾.故在椭圆左侧上不存在符合题设条件的点.●通法特法妙法(1)解析法——解析几何存在的理由解析法的实质是用代数的方法学习和研究几何.在解析几何的模式

14、下,平面上任意一条曲线都唯一对应着一个二元方程.反之,根据任意一个二元方程,都可以用描点法唯一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。