《函数基本性质》PPT课件.ppt

《函数基本性质》PPT课件.ppt

ID:52072389

大小:1.54 MB

页数:49页

时间:2020-03-31

《函数基本性质》PPT课件.ppt_第1页
《函数基本性质》PPT课件.ppt_第2页
《函数基本性质》PPT课件.ppt_第3页
《函数基本性质》PPT课件.ppt_第4页
《函数基本性质》PPT课件.ppt_第5页
资源描述:

《《函数基本性质》PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数基本性质1、增减函数(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

2、有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.3、函数单调区间与单调性的判定方法(A)定义法:1任取x1,x2∈D,且x1

3、x)的单调性与f(u)的单调性相同那么这个复合函数为增函数,不相同就为减函数。注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写(成其并集).函数的奇偶性(整体性质)(1)、偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)、奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)、具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利

4、用定义判断函数奇偶性的步骤:1首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.(4)利用奇偶函数的四则运算以及复合函数的奇偶性1)在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶

5、的乘积是奇函数;2)复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.函数最值及性质的应用1、函数的最值1利用二次函数的性质(配方法)求函数的最大(小)值2利用图象求函数的最大(小)值3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[

6、a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);2、函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性。3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。4、绝对值函数求最值,先分段(自变量>0/<0),再通过各段的单调性,或图像求最值。5

7、、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。练习例1如图1-3-1-3是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.(1)画出已知函数f(x)=-

8、x2+2x+3的图象;(2)证明函数f(x)=-x2+2x+3在区间(-∞,1]上是增函数;(3)当函数f(x)在区间(-∞,m]上是增函数时,求实数m的取值范围.1)函数f(x)=-x2+2x+3的图象如图1-3-1-4所示.(2)设x1、x2∈(-∞,1],且x1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。