3、点和保险储备量订货点:S=LR+B当库存量降到S时应订货,订货期内发生缺货则采取缺货不供应处理方式。设:因此得年度缺货费为N*C3E(Y),保险储备费为C2B,总费用为:T=N*C3E(Y)+C2(S-LR)求T最小,即由min{N*C3E(Y)+C2(S-LR)}确定S*、B*。小结:模型的建立1定义:C1=25元/次,C2=2元/年,C3=4元/件×次,U=10元/件,D=3650件/年,R=10件/天,L=10天。2定义:Q=RT3定义:S=LR+B用枚举法求S*使min{N*C3E(Y)+C2(S-LR)}再由B*=S*-LR确定,最后求得:Q*,N*,S*,B*
4、(2)模型的Matlab实现方法命令:min(X)—求向量的最小值实现方法:在Matlab中编辑M函数文件,已知数据:h=10;n=12,g=4;l=10;d=10;B=0:5:30;E=1:7;C=1:7;H=1:7;T=1:7;X=80:5:130Q=1:11;P=[0.01,0.02,0.05,0.15,0.25,0.20,0.15,0.10,0.04,0.02,0.01];fori=1:7s=l*d+B(i);forj=1:11ifX(j)>sQ(j)=X(j)-s;elseQ(j)=0;endendQ;E(i)=Q*P’;C(i)=n*g*E(i);H(i)=h
5、*B(i);T(i)=C(i)+H(i);endE,C,R,T;Mint=min(T’);运算结果为:E=(5.60003.0001.40000.550000.20000.500)C=268.800144.00067.20026.4009.6002.4000H=050100150200250300T=26.800194.000167.200176.400209.600252.400300.00minT=167.2000,B*=10,S*=10.结果:(1)不采用储存策略,缺货费用较多;(2)保存较多的库存量,储备费用较多;(3)建立合理的保险储备量,则企业的年度平均费用最
6、少.2、回归分析—商品销量与价格的关系某厂生产的一种电器的销量y与竞争对手的价格x1和本厂的价格x2有关,下表是该商品在10个城市的销售记录,试根据这些数据建立y与x1、x2的关系式。若某市本厂产品销价160元,竞争对手销价170元,预测商品在该市的销量.x1/元120140190130155175125145180150X2/元10011090150210150250270300250y/个10210012077469326696585(1)模型的建立将(x1,y)和(x2,y)各10个点绘成散点图,可以看出y与x2有比较明显的线性关系,而y与x1之间的关系则难以确定,
7、用回归分析进行研究(plot(x,y,’:r+’))回归分析的类型:最简单形式:y=b0+b1x多元形式:y=b0+b1x1+b2x2+‥‥‥+bmxm更一般形式:(多元线性回归的标准形)y=b0+b1f1(x)+b2f2(x)+‥‥‥+bmfm(x)其中m≥2,x=(x1,x2,‥‥‥,xm),fj是已知函数b=(b0,b1,‥‥‥,bm)为回归系数在回归分析中自变量x=(x1,x2,‥‥‥,xm)是影响变量y的主要因素,是能够被控制和观察的,且还受到随机因素干扰,可以合理假设这种干扰服丛正态分布,模型记为:其中σ未知,现在