椭圆的定义及其标准方程教案.doc

椭圆的定义及其标准方程教案.doc

ID:51936413

大小:75.00 KB

页数:6页

时间:2020-03-19

椭圆的定义及其标准方程教案.doc_第1页
椭圆的定义及其标准方程教案.doc_第2页
椭圆的定义及其标准方程教案.doc_第3页
椭圆的定义及其标准方程教案.doc_第4页
椭圆的定义及其标准方程教案.doc_第5页
资源描述:

《椭圆的定义及其标准方程教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§2.1.1椭圆的定义与标准方程一、教材分析本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章的重点内容之一。二、教学目标(一)知识目标1、理解并掌握椭圆的定义,明确焦点、焦距的概念;2、掌握椭圆的标准方程;(二)能力目标培养学生发现规律、寻求规律、认识规律并利用规律解决实际问题的能力。(三)德育目

2、标1、使学生认识并理解世间一切事物的运动都是有规律的;2、使学生通过运动规律,认清事物运动的本质。三、教学重、难点及关键1、重点:椭圆的定义和椭圆的标准方程。2、难点:椭圆标准方程的推导。3、关键:突破难点要抓住“建立坐标系”和“化简方程”两个环节。四、教学方法主要采用探究实践、启发与讲练相结合五、教具主要采用多媒体课件六、教学过程1、创设情景、引入概念(多媒体演示)体育场的平面图、卫星绕地球运行的动画,描绘出运行轨迹。提问:体育场的外墙、卫星的运行轨迹是什么图形?学生回答:椭圆请同学再列举一些椭圆形的例

3、子,教师指出椭圆在生活中很常见,今天我们就一起学习----椭圆(给出课题)。教师指出:通过前面的学习知道,圆是平面内与定点的距离等于定长的点的轨迹,那么椭圆又是满足什么条件的点的轨迹呢?我们一起来探究。2、尝试探究、形成概念让学生拿出课前准备的纸板、细绳、图钉,设问:用这些工具如何来画椭圆呢?教师先用多媒体演示画法,再让学生动手,使其尝试到成功的喜悦,同时提醒学生注意绳长要大于两图钉之间的距离。依据上面的作图实践及多媒体演示的画法,请学生思考:椭圆是满足什么条件的点的轨迹?教师启发、提问,并由学生归纳出椭

4、圆的定义。定义:平面内与两个定点F1、F2的距离之和等于常数2a(大于

5、F1F2

6、)的点的轨迹叫做椭圆。其中两个定点叫做焦点,两焦点的距离叫做焦距,记为2c。提问:若令M为椭圆上任意一点,可否把定义用数学表达式写出?学生思考回答:

7、MF1

8、+

9、MF2

10、=2a教师指出:此式称为定义式,其应用非常广泛。3、标准方程的推导依据实验的步骤来研究椭圆的方程(1)建系:以F1、F2所在直线为x轴,线段F1F2的中垂线为y轴建立直角坐标系。(2)设点:设M(x,y)是椭圆上任意一点,因

11、F1F2

12、=2c,则F1(-c,

13、0),F2(c,0)(学生回答)(3)列式:让学生自己列出:

14、MF1

15、+

16、MF2

17、=2a,并将其坐标化后得:(4)化简:教师:为体现数学的简洁美,应化简。采取什么样的方法呢?学生回答:平方。教师:这里有两个根式,如何平方更简捷?学生思考得出:移项平方,再移项再平方的方法。教师带领学生一起化简,得到:。(用多媒体演示)教师指出:此方程形式还不够简捷,仍有变形的必要。先化简,经过分析可令,则方程变为:,联想到直线的截距式方程,可整理得:提问:a、b的大小关系如何?学生:a>b>0教师指出:方程叫做椭圆的标准方

18、程,其焦点在x轴上,焦点坐标为F1(-c,0),F2(c,0)且启发:若把坐标系中的x轴、y轴的位置互换,椭圆的焦点位置如何?方程形式又如何?让学生合理猜想,得出:教师指出此方程同样可用上述方法进行推导。思考:如何依据标准方程判断焦点的位置?学生观察后可得出:含的分式的分母谁大,焦点就在那个轴上。五秒快速练习:判断下列椭圆的焦点位置?1、2、3、4、4、知识应用例1:已知椭圆的焦点在轴上,焦距为8,椭圆上的点到两个焦点的距离之和为10,求椭圆的标准方程.先给学生提示,再让学生自己动手做,并抽取两位同学所做

19、的进行讲评,最后课件给出标准答案。例2:求下列椭圆的焦点和焦距(1);(2)分析:解题关键是判断椭圆的焦点在哪条坐标轴上,方法是观察标准方程中含项与含项的分母,哪项的分母大,焦点就在哪条坐标轴上。学生先做,然后课件给出正解。分组练习:求椭圆的焦距与焦点坐标?①②请学生给出结果,体会成功的喜悦。同时给出练习③让学生独立完成,并对学生所做的进行讲评。5、归纳小结(1)知识小结:引导学生归纳,最后教师给出知识结构图。(2)方法小结:(教师小结)①用坐标法研究曲线;②用运动、变化的观点分析问题;6、作业:教材30

20、页练习2.1.11、2、3。由于在多媒体教室授课,板书量相对较少。学生的练习可以通过投影仪投影到银幕上共同欣赏和订正。教师的板书也可以通过投影仪投影到银幕上。§2.1.2椭圆的性质

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。