高三数学立体几何历年高考题(2011年-2017年).doc

高三数学立体几何历年高考题(2011年-2017年).doc

ID:51905517

大小:4.07 MB

页数:7页

时间:2020-03-18

高三数学立体几何历年高考题(2011年-2017年).doc_第1页
高三数学立体几何历年高考题(2011年-2017年).doc_第2页
高三数学立体几何历年高考题(2011年-2017年).doc_第3页
高三数学立体几何历年高考题(2011年-2017年).doc_第4页
高三数学立体几何历年高考题(2011年-2017年).doc_第5页
资源描述:

《高三数学立体几何历年高考题(2011年-2017年).doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、.高三数学立体几何高考题1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)182.(2012年8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为(A)π(B)4π(C)4π(D)6π3.(2013年11)某几何体的三视图如图所示,则该几何体的体积为(  ).A.16+8πB.8+8πC.16+16πD.8+16π4.(2013年15)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得

2、截面的面积为π,则球O的表面积为______.5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱6.(2014年10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为(  )A.B.16πC.9πD.7.(2015年6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆

3、底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)斛(B)斛(C)斛(D)斛8.(2015年11)圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为,则()(A)(B)(C)(D)9(2016年7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是(A)17π(B)18π(C)20π(D)28π10(2016年11

4、)平面过正方体ABCD—A1B1C1D1的顶点A,,,,则m,n所成角的正弦值为(A)(B)(C)(D)11.(2017年6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是12.(2017年16)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径。若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________。Word范文.13(2011年).如图,四棱锥中,底面ABCD为平行四边形,,

5、,底面ABCD.(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高.14.(2012课标全国Ⅰ)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比。15.(2013课标全国Ⅰ)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的体积.Word范文.16(20

6、14课标全国Ⅰ)如图11所示,三棱柱ABCA1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1的距离为,求二面角A1-AB-C的大小.17.(2015年新课标1)如图四边形ABCD为菱形,G为AC与BD交点,,(1)证明:平面平面;(2)若,三棱锥的体积为,求该三棱锥的侧面积.Word范文.18(2016年新课标1)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面P

7、AB内的正投影为点E,连结PE并延长交AB于点G.(I)证明:G是AB的中点;(II)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19(2017年新课标1)如图,在四棱锥P-ABCD中,AB//CD,且(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.Word范文.高三数学立体几何高考题答案1.答案:B2.答案:B3.解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.V半圆柱=π×22×4=8π,V长方体=4×2×

8、2=16.所以所求体积为16+8π.故选A.4.解析:如图,设球O的半径为R,则AH=,OH=.又∵π·EH2=π,∴EH=1.∵在Rt△OEH中,R2=,∴R2=.∴S球=4πR2=.5.答案:B6.A [解析]如图所示,因为正四棱锥的底面边长为2,所以AE=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。