欢迎来到天天文库
浏览记录
ID:51873745
大小:160.50 KB
页数:10页
时间:2020-03-18
《2016中考数学(四川专版)总复习:第6讲 一元二次方程.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第6讲 一元二次方程 一元二次方程的概念及解法一元二次方程的概念只含有①________个未知数,且未知数的最高次数是②________的整式方程,叫做一元二次方程.它的一般形式是ax2+bx+c=0(a≠0).一元二次方程的解法解一元二次方程的基本思想是③________,主要方法有:直接开平方法、④________法、公式法、⑤________法等. 一元二次方程根的判别式及根与系数的关系根的判别式的定义关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式为⑥________.判别式与根的关系(1)b2-4ac>
2、0一元二次方程⑦__________的实数根;(2)b2-4ac=0一元二次方程⑧__________的实数根;(3)b2-4ac<0一元二次方程⑨________实数根.根与系数的关系如果一元二次方程ax2+bx+c=0(a≠0)的两根分别是x1、x2,则x1+x2=-,x1·x2=. 【易错提示】 (1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为0这个限制条件.(2)利用根与系数的关系解题时,要注意根的判别式b2-4ac≥0. 一元二次方程的应用正确列出一元二次方程的前提是准确理解题
3、意、找出等量关系,进而达到求解的目的.在此过程中往往要借助于示意图、列表格等手段帮助我们分析数量关系,并能根据具体问题的实际意义检验结果是否合理.1.已知方程一根求另一根和参数系数,可将已知根代入方程求出参数系数的值,再解方程另一根;也可以利用根与系数的关系求解.2.解一元二次方程需要根据方程特点选用适当的方法,一般情况下:(1)首先看能否用直接开平方法或因式分解法;(2)不能用以上方法时,可考虑用公式法;(3)除特别指明外,一般不用配方法.命题点1 一元二次方程的解法 (2014·自贡)解方程:3x(x-2)=2(2-x).
4、【思路点拨】 可以运用因式分解法比较简捷.【解答】 一元二次方程的解法有四种:因式分解法、开平方法,配方法与公式法.若方程的右边为0,且左边能分解因式,则宜选用因式分解法;若方程形如x2=c、(ax+b)2=c(c≥0)或可化为这种形式的一类方程,则宜选用开平方法;若方程二次项系数为1,一次项的系数为偶数时,则宜选用配方法;若用直接开平方法、配方法、因式分解法都不简便时,则用公式法.1.(2015·重庆A卷)一元二次方程x2-2x=0的根是()A.x1=0,x2=-2B.x1=1,x2=2C.x1=1,x2=-2D.x1=0,
5、x2=22.(2015·滨州)用配方法解一元二次方程x2-6x-10=0时,下列变形正确的为()A.(x+3)2=1B.(x-3)2=1C.(x+3)2=19D.(x-3)2=193.解方程:4x2-12x+5=0.4.(2013·自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.命题点2 一元二次方程根的判别式及根与系数 (2015·南充)已知关于x的一元二次方程(x-1)(x-4)=p2(p为实数).(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)【思路点拨】 (
6、1)首先将方程化为一般式,然后计算根的判别式为正,从而结论得以证明;(2)可以利用一元二次方程的根与系数的关系讨论得出p的值.【解答】 利用一元二次方程的根与系数的关系求字母系数的值的前提条件是方程必有两个实数根,也就是Δ≥0.1.(2015·眉山)下列一元二次方程中有两个不相等的实数根的方程是()A.(x-1)2=0B.x2+2x-19=0C.x2+4=0D.x2+x+1=02.(2015·成都)关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k
7、≠03.(2015·内江)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是________.4.(2014·南充)已知关于x的一元二次方程x2-2x+m=0,有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x+x-x1x2的值.命题点3 一元二次方程的应用 (2015·巴中)如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.【思路点拨
8、】 设小路的宽xm,将四块种植地平移为一个矩形,矩形的长为(40-x)m,宽为(32-x)m,根据矩形的面积公式可建立一元二次方程,解之可得答案.【解答】 列方程解应用题的关键是找到相等关系.而在找相等关系时,有时可借助图表,在求出方程的解后,要检验它是否符合实际意义.对于商
此文档下载收益归作者所有