欢迎来到天天文库
浏览记录
ID:51492671
大小:193.50 KB
页数:5页
时间:2020-03-25
《平方根(一)教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章实数2. 平方根(一)一、教学目标:(一)、知识与技能目标1.了解算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根.3.了解算术平方根的性质.(二)、过程与方法目标1.在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力.2.在合作交流等活动中,培养他们的合作精神和创新意识.(三)、情感与态度目标1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.二、教学重点:了解数的算术平方根的概念,用根号表示一个数的算术平方根,能求某些非负数的算术平方根。三、教学难
2、点:是非负数;a是非负数四、教学过程:本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:问题情境初步探究反馈练习学习小结作业布置深入探究第一环节:问题情境方法一:问题导入11111ABOCDExyzw内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大的正方形
3、,那么有a2=2,a=,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:x2=,y2=,z2=,w2=.意图:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示x2=2,y2=3,z2=4,w2=5;能求得z=2,但不能求得x、y、w的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必
4、要性.相对而言,建议选用方法二。第二环节:初步探究内容1:情境引出新概念x2=2,y2=3,z2=4,w2=5,已知幂和指数,求底数x,你能求出来吗?意图:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x,y是1到2之间的数,w是2到3之间的数但无法表示x、y、w,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正
5、数x就叫做a的算术平方根,记为“”,读作“根号a”.特别地,我们规定0的算术平方根是0,即.意图:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用巩固概念例1求下列各数的算术平方根:(1)900;(2)1;(3);(4)14.意图:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0
6、,负数没有算术平方根.答案:解:(1)因为302=900,所以900的算术平方根是30,即;(2)因为12=1,所以1的算术平方根是1,即;(3)因为,所以的算术平方根是,即;(4)14的算术平方根是.内容4:回解课堂引入问题x2=2,y2=3,w2=5,那么x=,y=,w=.第三环节:深入探究内容1:例2自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?意图:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将h=4.9t2进行变形,再用求算术平方根的方法求得题目的解.解:将h=
7、19.6代入公式得h=4.9t2,t2=4,所以t==2(秒).即铁球到达地面需要2秒.说明:此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.意图:让学生认识到算术平方根定义中的两层含义:中的a是一个非负数,a的算术平方根也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是,那么这个数是;2.的算术平方根是;BCA3.的算术平方根是;4.若,则=.二
此文档下载收益归作者所有