改进的粒子群优化控制算法及其仿真研究.pdf

改进的粒子群优化控制算法及其仿真研究.pdf

ID:51461955

大小:345.95 KB

页数:6页

时间:2020-03-25

改进的粒子群优化控制算法及其仿真研究.pdf_第1页
改进的粒子群优化控制算法及其仿真研究.pdf_第2页
改进的粒子群优化控制算法及其仿真研究.pdf_第3页
改进的粒子群优化控制算法及其仿真研究.pdf_第4页
改进的粒子群优化控制算法及其仿真研究.pdf_第5页
资源描述:

《改进的粒子群优化控制算法及其仿真研究.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、机床与液压Oct.2012HydromechatronicsEngineeringVo1.40No.19DOI:10.3969/j.issn.1001—3881.2012.19.005ImprovedControlAlgorithmBasedonParticleSwarmOptimizationandItsSimulationResearchNXiankunPolytechnicSchool,ChongqingJiaotongUniversity,Chongqing400074,ChinaAbstract:Theperormanceofcon

2、trolsystemisdeterminedbythecontrolparameterofcontroler.Aimedatthepuzzleofparameterselectionforparticleswarmoptimization(PSO)controlalgo-rithmthatthephenomenonofprematureconvergencemadethebasicPSOalgorithmshavebeeneasytogetinlocaloptimalsolution,andresuRedinimpossibleconverg

3、encetoglobalextremum,aswelasbeingnotsohighinsearchprecisionandslowerinconvergencespeed,thepaperproposedasortofimprovedcontrolalgorithmbasedonparticleswarmoptimization.Inthepaper,itdiscussedtheparticleswarmoptimizationalgorithmswithgeneticthought(GAPSO),researchedonimproveda

4、lgorithmofPSO,andmadethecomparativestudyforproposedcontrolalgorithmbymeansofsimulationexperiment.Theresponsecurveofsimulationresultdemonstratedthatitwouldbebetterincomparisonwithconventionalmethodindynamicandsteadyperformance,andverifiedthereasonabilityandfeasibilityoftheim

5、provedcontrolalgorithm.TheresearchresultshowsthattheimprovedalgorithmofPSOproposedbythepaperismoreefectiveforcontrollerparametertuning.Keywords:particleswarmoptimization,geneticthought,parametertuning,improvedcontrolal_gorithmofPSOthespeediness,accuracyandstability,thetechn

6、olo—1.Introductiongyofadvancedintelligentcontrolhasbeenobtainedwidegeneralizedapplication,andPSOalgorithmhasParticleswarmoptimization(PSO)[1]andthealwaysbeenusedincontrollerofintelligentcontrolgeneticalgorithm(CA)allaretheevolutionaryalgo-structuresoastomaketheparametertuni

7、ng[2].rithmbasedonthetheoryofbiologyevolutionismandThegeneticalgorithmisasortofsearchmethodgeneticsetcforsolvingoptimizationproblem,andbasedonprinciplesofbiologyevolution,andithaseachofthemhasowncharacteristic.PSOalgorithmbetterabilityofglobaloptimizationandoptimizationhasl

8、otsofadvantagessuchasbeingfasterinconvey-strategyofrandomization[3-4].Uptonow,GAal

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。