欢迎来到天天文库
浏览记录
ID:51429319
大小:997.00 KB
页数:8页
时间:2020-03-11
《2020届邢台市高三上学期第四次月考试题 数学(理).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、邢台市2019~2020学年高三上学期第四次月考数学(理科)考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分。考试时间120分钟。2.请将各题答案填写在答题卡上。3.本试卷主要考试内容:集合与逻辑,函数与导数,三角函数与解三角形,平面向量,数列,立体几何,解析几何,排列组合,复数,选修4-4。第I卷一、选择题:本大题共12小题。每小题5分。共60分。在每小题给出的四个选项中。只有一项是符合题目要求的。1.已知集合A={x
2、lnx<1},B={x
3、-14、=A.(0,2)B.(-1,2)C.(-1,e)D.(0,e)2.已知复数,则复数z的共扼复数=A.B.C.D.3.已知tanα=3,则cos2α+sin2α=A.B.C.-D.4.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=alnx+a。若f(-e)=4,则f(0)+f(1)=A.-1B.-2C.0D.15.已知l,m是两条不同的直线,α,β是两个不同的平面,且l//α,m⊥β,则下列命题中为真命题的是A.若α//β,则l//βB.若α⊥β,则l⊥mC.若l⊥m,则l//βD.若α//5、β,则m⊥α6.某几何体的三视图如图所示,则该几何体的最长棱的长为A.2B.2C.4D.2-8-7.楼道里有9盏灯,为了节约用电,需关掉3盏互不相邻的灯,为了行走安全,第一个和最后一个不关,则关灯方案的种数为A.10B.15C.20D.248.已知P是抛物线C:y2=2px(p>0)上的一点,F是抛物线C的焦点,O为坐标原点,若6、PF7、=2,∠PFO=,则抛物线C的方程为A.y2=xB.y2=2xC.y2=4xD.y2=6x9.若直线l:(m-n)x-(m+2n)y-3(m-2n)=0与曲线y=-28、+有两个相异的公共点,则l的斜率k的取值范围是A.B.C.D.10.如图,在长方体ABCD-A1B1C1D1中,AB=8,AD=6,异面直线BD与AC1所成角的余弦值为,则该长方体外接球的表面积为A.98πB.196πC.784πD.11.已知椭圆的左、右焦点分别为F1,F2,点P为椭圆上不同于左、右顶点的任意一点,I为△PF1F2的内心,且,若椭圆的离心率为e,则λ=A.B.1C.eD.212.在锐角△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S。若sin(A+C)=,则的最小9、值为A.1B.2C.D.2第II卷二、填空题:本大题共4小题,每小题5分。共20分。把答案填在答题卡中的横线上。13.已知向量a=(1,m),b=(,-),若a⊥b,则m=。-8-14.(2x-)7的展开式中x的系数为。(用数字作答)15.若lnx1-x1-y1+2=0,x2+2y2-4-2ln2=0,则(x1-x2)2+(y1-y2)2的最小值为。16.双曲线的一条渐近线上的点M(-1,)关于另一条渐近线的对称点恰为右焦点F,点P是双曲线上的动点,则10、PM11、+12、PF13、的最小值为。三、解答题:共7014、分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列{an}的前n项和为Sn,且Sn=2n2+kn+k。(1)求{an}的通项公式;(2)若bn=,求数列{bn}的前n项和Tn。18.(12分)已知椭圆C:的离心率为,右焦点为F(,0)。(1)求椭圆C的标准方程;(2)设O为坐标原点,若点A在直线y=1上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值。19.(12分)如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AB//CD,∠BAD=60°,CD=115、,AD=2,AB=4,点G在线段AB上,AG=3GB,AA1=1。(1)证明:D1G/平面BB1C1C。(2)求二面角A1-D1G-A的余弦值。20.(12分)已知直线l与抛物线C:y2=4x交于A,B两点,M(2,y0)(y0≠0)为弦AB的中点,过M作AB的垂线交x轴于点P。(1)求点P的坐标;(2)当弦AB最长时,求直线l的方程。21.(12分)-8-已知函数f(x)的定义域为R且满足f(-x)+f(x)=x2,当x≥0时,f'(x)16、(2)若方程f(x)=x有实数根x0,则称x0为函数f(x)的一个不动点。设正数x0为函数g(x)=xex+a(1-ex)+x+1的一个不动点,且f(x0)+≥f(1-x0)+x0,求a的取值范围。22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=2。(1)求C的普通方程和l的直角坐标方程;(2)直线l与x轴的交点为P,经过点P的直线m与曲线C交于A,B两点,若
4、=A.(0,2)B.(-1,2)C.(-1,e)D.(0,e)2.已知复数,则复数z的共扼复数=A.B.C.D.3.已知tanα=3,则cos2α+sin2α=A.B.C.-D.4.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=alnx+a。若f(-e)=4,则f(0)+f(1)=A.-1B.-2C.0D.15.已知l,m是两条不同的直线,α,β是两个不同的平面,且l//α,m⊥β,则下列命题中为真命题的是A.若α//β,则l//βB.若α⊥β,则l⊥mC.若l⊥m,则l//βD.若α//
5、β,则m⊥α6.某几何体的三视图如图所示,则该几何体的最长棱的长为A.2B.2C.4D.2-8-7.楼道里有9盏灯,为了节约用电,需关掉3盏互不相邻的灯,为了行走安全,第一个和最后一个不关,则关灯方案的种数为A.10B.15C.20D.248.已知P是抛物线C:y2=2px(p>0)上的一点,F是抛物线C的焦点,O为坐标原点,若
6、PF
7、=2,∠PFO=,则抛物线C的方程为A.y2=xB.y2=2xC.y2=4xD.y2=6x9.若直线l:(m-n)x-(m+2n)y-3(m-2n)=0与曲线y=-2
8、+有两个相异的公共点,则l的斜率k的取值范围是A.B.C.D.10.如图,在长方体ABCD-A1B1C1D1中,AB=8,AD=6,异面直线BD与AC1所成角的余弦值为,则该长方体外接球的表面积为A.98πB.196πC.784πD.11.已知椭圆的左、右焦点分别为F1,F2,点P为椭圆上不同于左、右顶点的任意一点,I为△PF1F2的内心,且,若椭圆的离心率为e,则λ=A.B.1C.eD.212.在锐角△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S。若sin(A+C)=,则的最小
9、值为A.1B.2C.D.2第II卷二、填空题:本大题共4小题,每小题5分。共20分。把答案填在答题卡中的横线上。13.已知向量a=(1,m),b=(,-),若a⊥b,则m=。-8-14.(2x-)7的展开式中x的系数为。(用数字作答)15.若lnx1-x1-y1+2=0,x2+2y2-4-2ln2=0,则(x1-x2)2+(y1-y2)2的最小值为。16.双曲线的一条渐近线上的点M(-1,)关于另一条渐近线的对称点恰为右焦点F,点P是双曲线上的动点,则
10、PM
11、+
12、PF
13、的最小值为。三、解答题:共70
14、分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列{an}的前n项和为Sn,且Sn=2n2+kn+k。(1)求{an}的通项公式;(2)若bn=,求数列{bn}的前n项和Tn。18.(12分)已知椭圆C:的离心率为,右焦点为F(,0)。(1)求椭圆C的标准方程;(2)设O为坐标原点,若点A在直线y=1上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值。19.(12分)如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AB//CD,∠BAD=60°,CD=1
15、,AD=2,AB=4,点G在线段AB上,AG=3GB,AA1=1。(1)证明:D1G/平面BB1C1C。(2)求二面角A1-D1G-A的余弦值。20.(12分)已知直线l与抛物线C:y2=4x交于A,B两点,M(2,y0)(y0≠0)为弦AB的中点,过M作AB的垂线交x轴于点P。(1)求点P的坐标;(2)当弦AB最长时,求直线l的方程。21.(12分)-8-已知函数f(x)的定义域为R且满足f(-x)+f(x)=x2,当x≥0时,f'(x)16、(2)若方程f(x)=x有实数根x0,则称x0为函数f(x)的一个不动点。设正数x0为函数g(x)=xex+a(1-ex)+x+1的一个不动点,且f(x0)+≥f(1-x0)+x0,求a的取值范围。22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=2。(1)求C的普通方程和l的直角坐标方程;(2)直线l与x轴的交点为P,经过点P的直线m与曲线C交于A,B两点,若
16、(2)若方程f(x)=x有实数根x0,则称x0为函数f(x)的一个不动点。设正数x0为函数g(x)=xex+a(1-ex)+x+1的一个不动点,且f(x0)+≥f(1-x0)+x0,求a的取值范围。22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=2。(1)求C的普通方程和l的直角坐标方程;(2)直线l与x轴的交点为P,经过点P的直线m与曲线C交于A,B两点,若
此文档下载收益归作者所有