欢迎来到天天文库
浏览记录
ID:51331114
大小:254.06 KB
页数:8页
时间:2020-03-21
《2019届高考数学专题7立体几何第2讲综合大题部分真题押题精练文.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2讲 综合大题部分1.(2018·高考天津卷)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.解析:(1)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(2)如图,取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,所以MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角
2、.在Rt△DAM中,AM=1,故DM==.因为AD⊥平面ABC,所以AD⊥AC.在Rt△DAN中,AN=1,故DN==.在等腰三角形DMN中,MN=1,可得cos∠DMN==.所以,异面直线BC与MD所成角的余弦值为.(3)如图,连接CM.因为△ABC为等边三角形,M为边AB的中点,所以CM⊥AB,CM=.又因为平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,而CM⊂平面ABC,故CM⊥平面ABD,所以∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD==4.在Rt△CMD中,sin∠CDM==.所以,直线CD与平面ABD所
3、成角的正弦值为.2.(2018·高考北京卷)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.证明:(1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,所以AB⊥平面PAD,所以AB⊥PD.又因为PA⊥PD,所以PD⊥平面PAB.所以平面PAB
4、⊥平面PCD.(3)如图,取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形.所以EF∥DG.又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.3.(2017·高考全国卷Ⅰ)如图,在四棱锥PABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥PABCD的体积为,求
5、该四棱锥的侧面积.解析:(1)证明:由∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,又AP∩PD=P,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)如图所示,在平面PAD内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD,故AB⊥PE,可得PE⊥平面ABCD.设AB=x,则由已知可得AD=x,PE=x.故四棱锥PABCD的体积VPABCD=AB·AD·PE=x3.由题设得x3=,故x=2.从而PA=PD=2,AD=BC=2,PB=PC=2.可得四棱锥PABCD的侧面积为P
6、A·PD+PA·AB+PD·DC+BC2sin60°=6+2.4.(2017·高考全国卷Ⅱ)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为2,求四棱锥PABCD的体积.解析:(1)证明:在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又BC⊄平面PAD,AD⊂平面PAD,故BC∥平面PAD.(2)如图,取AD的中点M,连接PM,CM.由AB=BC=AD及BC∥AD,∠ABC=90°得四边形ABC
7、M为正方形,则CM⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD.因为CM⊂底面ABCD,所以PM⊥CM.设BC=x,则CM=x,CD=x,PM=x,PC=PD=2x.如图,取CD的中点N,连接PN,则PN⊥CD,所以PN=x.因为△PCD的面积为2,所以×x×x=2,解得x=-2(舍去)或x=2.于是AB=BC=2,AD=4,PM=2.所以四棱锥PABCD的体积V=××2=4.1.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB
8、=AD=1,CD=2,AC=EC=.(1)求证:平面EBC⊥平面EBD;(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面B
此文档下载收益归作者所有