欢迎来到天天文库
浏览记录
ID:51222533
大小:384.00 KB
页数:13页
时间:2020-03-20
《高考数学复习-离散型随机变量及其分布列(理)(提高)(2).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、离散型随机变量及其分布列编稿:赵雷审稿:李霞【学习目标】1.了解离散型随机变量的概念.2.理解取有限个值的离散型随机变量及其分布列的概念.3.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题.4.理解两个特殊的分布列:“两点分布”和“超几何分布”。【要点梳理】要点一、随机变量和离散型随机变量1.“随机试验”的概念一般地,一个试验如果满足下列条件:a.试验可以在相同的情形下重复进行.B.试验的所有可能结果是明确可知的,并且不止一个.c.每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果
2、.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示。要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。例如,任意掷一枚硬币,可能出现正面向上、反面向上这两种结果,虽然这个随机试验的结果不具有数量性质,但仍可以用数量来表示它,比如,我们用ξ来表示这个随机试验中出现正面向上的次数,则ξ=0,表示试验结果为反面向
3、上,ξ=1,表示试验结果为正面向上。(2)随机变量实质是将随机试验的结果数量化。3.离散型随机变量的定义如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。离散型随机变量的例子很多.例如某人射击一次可能命中的环数X是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0,1,2,….4.随机变量的分类随机变量有以下两种:(1)离散型随机变量:(2)连续型随机变量:如果随机变量可以取其一区间内的一切值,这样的随机变量叫做连续型随机变
4、量.要点诠释:离散型随机变量和连续型随机变量的区别:离散型随机变量,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值按一定次序一一列出.连续性随机变量可取某一区间内的一切值,我们无法将其中的值一一列举.例如,抛掷一枚骰子,可能出现的点数就是一个离散型随机变量;某人早晨在出租车站等出租车的时间(单位:秒)就不是一个离散型随机变量.5.若是随机变量,其中a,b是常数,则也是随机变量,并且不改变其属性(离散型、连续型)。要点二、离散性随机变量的分布列1.分布列定义:设离散型随机变量所有可能取得的值为x1,x2,…,x3,…xn,若取每一
5、个值xi(i=1,2,…,n)的概率为,则称表x1x2…xi…xnPP1P2…Pi…Pn为随机变量的概率分布,简称的分布列.要点诠释:离散型随机变量的分布列,不仅清楚地反映离散型随机变量所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布状况,是进一步研究离散型随机试验的数量特征的基础。2.分布列的性质离散型随机变量的分布列都具有下面两个性质:(1)Pi≥0,i=1,2,…,n;(2)P1+P2+…+Pn=1要点诠释:1.离散型随机变量分布列的两条性质是检验某事件的概率或者一个分布列是否正确的重
6、要依据。2.特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即3.离散型随机变量函数及其分布列一般地,若ξ是随机变量,f(x)是连续函数或单调函数,则f(ξ)也是随机变量,也就是说,随机变量的某些函数也是随机变量。已知离散型随机变量的分布列,求离散型随机变量函数的分布列:①ξ与η一一对应时,ξ的每个取值的概率就对应着η的每个取值的概率;②如果ξ有多个取值对应一个η的值,那么这个η值的概率就是这多个ξ值的概率的和。要点诠释:已知离散型随机变量的分布列,求离散型随机变量函数的分布列,关键是弄清楚ξ取每一个值时
7、对应的η所取的值。要点三、离散性随机变量的分布列的求法1.求随机变量的概率分布有以下几步:(1)要确定随机变量的可能取值有哪些.明确取每个值所表示的意义;(2)分清概率类型,计算取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样);(3)列表对应,给出分布列,并用分布列的性质验证.要点诠释:随机变量的概率分布的求解要注意以下几点:①搞清楚随机变量每个取值对应的基本随机事件;②计算必须准确无误;③注意运用概率分布的两条性质检验所求的概率分布是否正确.2.常见的分布列的求法:(1)取球、投骰子、抽取产品等问题的概率分布,
8、关键是概率的计算.所用方法主要有化归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.(2)对于有些问题,它的随机变量的选取与所问问题的关系不是
此文档下载收益归作者所有