资源描述:
《一类非线性粘弹性波动方程声学边界问题的研究.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、>46G6{~"8z2/:u:73h:#!f:DS#V_m:!wmGa:2012G44$9;#901D7,EÆ"ha~>/6kd1&7btC[t/qC~~&w8d"h;^U^[;^T~"t1&~`s$
2、r!w/`bd?47℄f>6D391h*ikd?4y"d!wua%_dh=:;℄>df>"~>d4s4iFb%"hFWwHT?:62k2012.6.1$9
3、'/-'901&B()EÆbtC[t/q
4、C~~&w8dY"h;^T~"t1&~`;^U^[F?d1&~7"7d?41^T~/'"7dCm3b1Yd?*"hFb+u^T~-+R"~7d0o>~h1-e'-6:*k7dg=lo"6y7;5=x5"ha^T~8"1[wR7$*7db66CmwHT?:62k2012.6.1^T?:vk2012.6.1℄ S}%}6F=!asBZs.pB}}%v;fZt:s,T"s,Ztργ
5、ut
6、utt−∆
7、u−∆utt+g(t−s)∆u(x,s)ds=
8、u
9、u(x,t)∈Ω×(0,∞),(1.1)0u=0(x,t)∈Γ1×(0,∞),(1.2)Z∂u∂ut∂u(s)tt′+−g(t−s)ds=y(x,t)∈Γ0×(0,∞),(1.3)∂ν∂ν0∂ν′ut+p(x)y+q(x)y=0(x,t)∈Γ0×(0,∞),(1.4)u(x,0)=u0(x),ut(x,0)=u1(x)x∈Ω.(1.5)!&'pgp,yy*asBZs.pBR2BC^j,=H!.7z;f.g
10、p,-HSobolevVon
11、
12、ut
13、utudx+∇ut∇udx+uydΓ+p(x)(y)dΓ,ρ+1ΩΩΓ02Γ0ZZt1ρΦ(t)=−
14、ut
15、utg(t−s)(u(t)−u(s))dsdxρ+1Ω0ZZt−∇utg(t−s)(∇u(t)−∇u(s))dsdx.Ω0Æ :bt/qC;Faedo-Galerkin;R
16、;t;E)#d.i℄ S}%}6AbstractThispaperisconcernedwiththeexistence,theexponentialdecayfortheso-lutionofthefollowingnonlinearviscoelasticwaveequationwithacousticbound-aryconditions,Ztργ
17、ut
18、utt−∆u−∆utt+g(t−s)∆u(x,s)ds=
19、u
20、u(x,t)∈Ω×(0,∞),(1.1)0u=0(x,t)∈Γ1×(0,∞),(1.2)Zt∂u∂utt∂u(s)
21、′+−g(t−s)ds=y(x,t)∈Γ0×(0,∞),(1.3)∂ν∂ν0∂ν′ut+p(x)y+q(x)y=0(x,t)∈Γ0×(0,∞),(1.4)u(x,0)=u0(x),ut(x,0)=u1(x)x∈Ω.(1.5)Thisdissertationisdividedintofoursections.Inthefirstsection,weintroducetheimportanceandtheinternationalre-searchprogressofthenonlinearviscoelasticwaveequation,wealso
22、statethehypothesesfortheproblem.Inthesecondsection,welistsomepreliminariessuchastheSobolevimbed-dingtheorem,severalkindsofimportantinequalitiesandsoon.Inthethirdsection,weprovetheexistenceofthesolutiontotheproblem(1.1)-(1.5).TheproofoftheexistenceincludesFaedo-Galer