欢迎来到天天文库
浏览记录
ID:51025229
大小:1.06 MB
页数:16页
时间:2020-03-17
《《中点四边形》PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、探究中点四边形宁化第六中学八年级(1)班授课教师:刘清水课题:四边形之间的关系四边形平行四边形矩形正方形两组对边分别平行有一个角是直角有一组邻边相等有一个角是直角有一组邻边相等一组对边平行另一组对边不平行梯形两腰相等等腰梯形有一个角是直角直角梯形知识回顾1菱形菱形有一个角是直角且有一组邻边相等三角形的性质定理:三角形的中位线平行于第三边,且等于第三边的一半.这个定理提供了证明线段平行以及线段成倍分关系的根据.∵DE是△ABC的中位线,DEBCA∴DE∥BC,知识回顾2中位线我思考,我进步1顺次连接任意
2、四边形各边中点所成的四边形是什么形?观察猜想并证明已知:如图,点E、F、G、H分别是四边形ABCD各边中点。求证:四边形EFGH为平行四边形。证明:连接AC∵E、F是AB、BC边中点∴EF∥AC且EF=AC同理:HG∥AC且HG=AC∴EF∥HG且EF=HG∴四边形EFGH为平行四边形。EFGH请同学们画一画、看一看、猜一猜并证一证ABCD(一组对边平行且相等的四边形是平行四边形)ADCB中点四边形的定义顺次连接四边形各边中点所得的四边形叫做中点四边形。我思考,我进步2顺次连接各边中点所成的四边形AB
3、CD任意四边形平行四边形是平行四边形。也是平行四边形吗?ADCHEBGF那么:矩形呢?有没有更特殊?小组合作探究:任意四边形的中点四边形都是________;平行四边形的中点四边形是__________;矩形的中点四边形是________________;菱形的中点四边形是________________;正方形的中点四边形是______________;梯形的中点四边形是________________;直角梯形的中点四边形是____________;等腰梯形的中点四边形是____________。
4、平行四边形平行四边形菱形其它各种四边形的中点四边形边是何种四边形呢?先观察并猜一猜,再证明.ABCHDEFGDBCADEFGABCHDEFGABCHDEFGABCHDEFGABGFEDCH菱形菱形平行四边形平行四边形矩形正方形小组合作探究:任意四边形的中点四边形都是________;平行四边形的中点四边形是__________;矩形的中点四边形是________________;菱形的中点四边形是________________;正方形的中点四边形是______________;梯形的中点四边形是__
5、______________;直角梯形的中点四边形是____________;等腰梯形的中点四边形是____________。平行四边形平行四边形平行四边形平行四边形矩形菱形菱形正方形结合刚才的证明过程,小组讨论并思考:(1)中点四边形的形状与原四边形的什么有着密切的关系?(2)要使中点四边形是菱形,原四边形一定要是矩形吗?(3)要使中点四边形是矩形,原四边形一定要是菱形吗?ABCHDEFGDBCAGEFG结论:(1)中点四边形的形状与原四边形的有密切关系;(2)只要原四边形的两条对角线,就能使中点四
6、边形是菱形;(3)只要原四边形的两条对角线,就能使中点四边形是矩形;(4)要使中点四边形是正方形,原四边形要符合的条件是。对角线相等互相垂直相等且互相垂直驶向胜利的彼岸我思,我进步71.请你设计一个中点四边形为正方形,但原四边形又不是正方形的四边形,并说出方法。ABCHDEFG想一想,做一做答案举例2、如图:点E、F、G、H分别是线段AB、BC、CD、AD的中点,则四边形EFGH是什么图形?并说明理由。ABCDEFGH想一想,做一做这一节课你学到了什么?1、中点四边形的定义;2、中点四边形的形状与原四
7、边形的对角线的关系。独立作业驶向胜利的彼岸1、求证:顺次连接等腰梯形的各边中点所成的四边形是______。2、中点四边形的面积与原四边形的面积之比为多少?谢谢指导!
此文档下载收益归作者所有