资源描述:
《高中数学全部知识点整理.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R2.关于“属于”的概念如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aÏA3.集合的分类:(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合(3).空集不含任何元素的集合 例:{x
2、x2=-5}=Φ二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作A
3、B或BA2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。即AÍA②如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)③如果AÍB,BÍC,那么AÍC④如果AÍB同时BÍA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算1.交集:记作A∩B(读作"A交B"),即A∩B={x
4、x∈A,且x∈B}.2.并集:记作A∪B(读作"A并B"),即A∪B=
5、{x
6、x∈A,或x∈B}.3.交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.SCsAA4.全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x
7、xÎS且xÏA}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念1.函数的单调性2.函数的定义域值域3.函数的奇偶性若f(-x)=
8、f(x),那么f(x)就叫做偶函数.若f(-x)=—f(x),那么f(x)就叫做奇函数.注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断24其定义域是否关于原点对称;确定f(-x)与f(x)的关系;作出
9、相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.补充不等式的解法与二次函数(方程)的性质1、a>0时,,2、配方:3、△>0时,()的两个根为(),则,,,4、△=0时,()的两个等根为,则,无解,5、△<0时,()无解,则,无解6.根与系数的关系(韦达定理)若()的两个根为则高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是
10、0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,;当时,;当时,不存在。②过两点的直线的斜率公式:(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。②斜截式:,直线斜率为k,直线在y轴上的截距为b24③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分
11、别为。⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点相交交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合(8)