函数点对称线对称及周期总结.doc

函数点对称线对称及周期总结.doc

ID:50936136

大小:179.00 KB

页数:3页

时间:2020-03-16

函数点对称线对称及周期总结.doc_第1页
函数点对称线对称及周期总结.doc_第2页
函数点对称线对称及周期总结.doc_第3页
资源描述:

《函数点对称线对称及周期总结.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、同一函数的周期性、对称性问题(即函数自身)1、周期性:对于函数,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,都有都成立,那么就把函数叫做周期函数,不为零的常数T叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。2、对称性定义(略),请用图形来理解。3、对称性:我们知道:偶函数关于y(即x=0)轴对称,偶函数有关系式奇函数关于(0,0)对称,奇函数有关系式上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数关于对称也可以写成或

2、简证:设点在上,通过可知,,即点上,而点与点关于x=a对称。得证。若写成:,函数关于直线对称(2)函数关于点对称或简证:设点在上,即,通过可知,,所以,所以点也在上,而点与关于对称。得证。若写成:,函数关于点对称(3)函数关于点对称:假设函数关于对称,即关于任一个值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于对称。但在曲线c(x,y)=0,则有可能会出现关于对称,比如圆它会关于y=0对称。1、周期性:(1)函数满足如下关系系,则A、B、C、或(等式右边加负号亦成立)D、其他情形(2)函数满足且,则可推出即可以得到的周期为2(b-a),即可以得到“如果函数在定义域

3、内关于垂直于x轴两条直线对称,则函数一定是周期函数”(3)如果奇函数满足则可以推出其周期是2T,且可以推出对称轴为,根据可以找出其对称中心为(以上)如果偶函数满足则亦可以推出周期是2T,且可以推出对称中心为,根据可以推出对称轴为(以上)(4)如果奇函数满足(),则函数是以4T为周期的周期性函数。如果偶函数满足(),则函数是以2T为周期的周期性函数。一、两个函数的图象对称性1、与关于X轴对称。换种说法:与若满足,即它们关于对称。2、与关于Y轴对称。换种说法:与若满足,即它们关于对称。3、与关于直线对称。换种说法:与若满足,即它们关于对称。4、与关于直线对称。换种说法:与若满足,即它们关于

4、对称。5、关于点(a,b)对称。换种说法:与若满足,即它们关于点(a,b)对称。1、与关于直线对称。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。