函数模型及其应用教案00002.doc

函数模型及其应用教案00002.doc

ID:50726470

大小:151.50 KB

页数:11页

时间:2020-03-07

函数模型及其应用教案00002.doc_第1页
函数模型及其应用教案00002.doc_第2页
函数模型及其应用教案00002.doc_第3页
函数模型及其应用教案00002.doc_第4页
函数模型及其应用教案00002.doc_第5页
资源描述:

《函数模型及其应用教案00002.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、适用学科高中数学适用年级高一适用区域苏教版区域课时时长(分钟)2课时知识点几类不同增长的函数模型的特点、用已知函数模型解决实际问题、建立函数模型解决实际问题教学目标利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例。教学重点了解函数模型的广泛应用。教学难点了解函数模型的广泛应用。函数模型及其应用教案00002教学过程一、导入函数应用问题是高考的热点,高考对应用题的考察即考小题

2、又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题;(2)题目涉及的函数多以基本初等函数为载

3、体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。二、知识讲解考点1解决实际问题的解题过程(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.这些步骤用框图表示:实际问题函数模型实际问题的解

4、函数模型的解抽象概括还原说明运用函数性质考点2解决函数应用问题应这种培养下面一些能力(1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。三、例题精析类型一函数模型解决实际问题例题1某

5、地区2019年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表。根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2019年底,该地区的沙漠面积将大约变为多少万公顷;(2)如果从2019年底后采取植树造林等措施,每年改造0.6万公顷沙漠,那么到哪一年年底该地区沙漠面积减少到90万公顷?观测时间2019年底2019年底2019年底2019年底2019年底该地区沙漠比原有面积增加数(万公顷)0.20190.40000.60010.79991.0001【规范解

6、答】(1)由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y=kx+b的图象。将x=1,y=0.2与x=2,y=0.4,代入y=kx+b,求得k=0.2,b=0,所以y=0.2x(x∈N)。因为原有沙漠面积为95万公顷,则到2019年底沙漠面积大约为95+0.5×15=98(万公顷)。(2)设从2019年算起,第x年年底该地区沙漠面积能减少到90万公顷,由题意得95+0.2x-0.6(x-5)=90,解得x=20(年)。故到2019年年底,该地区沙漠面积减少到90万公顷。【总结与反思】初中我们学习过的正比

7、例、反比例和一元一次函数的定义和基本性质,我们要牢固掌握。特别是题目中出现的“成正比例”、“成反比例”等条件要应用好。类型二函数性质应用例题1已知函数在R上有定义,对任何实数和任何实数,都有(Ⅰ)证明;(Ⅱ)证明其中和均为常数;【规范解答】证明(Ⅰ)令,则,∵,∴。(Ⅱ)①令,∵,∴,则。假设时,,则,而,∴,即成立。②令,∵,∴,假设时,,则,而,∴,即成立。∴成立。【总结与反思】该题应用了正比例函数的数字特征,从而使问题得到简化。而不是一味的向函数求值方面靠拢。四、课堂运用基础1.某化工厂引进一条先进生产线生产某种化工产

8、品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?2.即将开工的上海与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。