欢迎来到天天文库
浏览记录
ID:50685513
大小:1.30 MB
页数:15页
时间:2020-03-15
《正弦定理和余弦定理的综合应用ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第五章三角函数、解三角形第六节 正弦定理和余弦定理(2)一、正、余弦定理定理正弦定理余弦定理内容a2=;b2=;c2=.b2+c2-2bccosAa2+c2-2accosBa2+b2-2abcosC[知识能否忆起]——上节课知识回顾2RsinB2RsinC2RsinAsinA∶sinB∶sinC定理正弦定理余弦定理解决的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.“AAS、ASA”“ASS”“SSS”“SAS”在三角形中:①大角对大边,大边对大角;②大角的正弦
2、值较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sinA>sinB.[目标早知道]——本节课教学目标题组训练得方法:题型一:利用正弦、余弦定理解三角形题型二:利用正弦、余弦定理判定三角形的形状利用正弦、余弦定理解三角形【考向探寻】1.利用正弦定理解斜三角形.2.利用余弦定理解斜三角形.由向量共线得到三边关系,再用余弦定理求解.①先求sinA,sinC,cosC,利用sinB=sin(A+C)求解;②利用正弦定理求解.(1)已知两边和一边的对角解三角形时,可能出现两解、一解、无解三种情况,解题时应根据已知条件具体判断解的情况,常用方法是根据图形或由“大边对大角”
3、作出判断或用余弦定理列方程求解.(2)三角形中常见的结论①A+B+C=π.②三角形中大边对大角,反之亦然.③任意两边之和大于第三边,任意两边之差小于第三边.利用正弦、余弦定理判定三角形的形状【考向探寻】利用正余弦定理及三角形的边角关系判定三角形的形状.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.①求A的大小;②若sinB+sinC=1,试判断△ABC的形状.判断三角形形状的方法(1)利用正、余弦定理把已知条件转化为边与边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理
4、把已知条件转化为内角的三角函数间的关系,通过三角恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意A+B+C=π这个结论的运用.高考链接:(1)求角B的大小;(2)若b=3,sinC=2sinA,求a,c的值.(1)求A;
此文档下载收益归作者所有