欢迎来到天天文库
浏览记录
ID:50667545
大小:104.50 KB
页数:2页
时间:2020-03-13
《勾股定理应用题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、1、如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.2、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。3、通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF
2、,试说明理由。(1)思路梳理∵AB=CD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线。根据____________,易证_______,得EF=BE+DF。(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系____时,仍有EF=BE+DF。(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=A
3、C,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。21、考点:角平分线的性质;勾股定理分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运
4、用,注意:角平分线上的点到角两边的距离相等. 3、解析:(1)SAS………………………(1分)△AFE………………………(2分)(2)∠B+∠D=180°………………………(4分)(3)解:BD2+EC2=DE2.………………………(5分)∵AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.∵△ABC中,∠BAC=90°.∴∠ACB+∠ACG=∠ACB+∠B=90°,即∠ECG=90°.∴EC2+CG2=EG2.………………………(7分)在△AEG与△AED中,∠EAG=∠
5、EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD,又∵AD=AG,AE=AE,∴△AEG≌△AED.∴DE=EG.又∵CG=BD,∴BD2+EC2=DE2.………………………(9分)2
此文档下载收益归作者所有