欢迎来到天天文库
浏览记录
ID:50624490
大小:172.00 KB
页数:7页
时间:2020-03-12
《函数的定义域、值域、对应关系讲义_20131110155430550.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数的概念、定义域、值域、解析式和图像一、知识过关1.函数:AB的概念。在理解函数概念时要注意:⑴____________;⑵____________(3)2.函数的三要素:3.函数的三种表示方法:4.定义域的求法:(1)具体给出解析式(2)实际问题的定义域(3)抽象函数的定义域:5.函数值域(最值)的方法6.求函数解析式的常用方法:7.常见的图象变换一、基础训练1、的定义域为;函数的定义域为;的定义域为;的定义域为;72、函数的值域为;函数y=的值域为;3、设则__4、已知集合A={0,1,2},集合B={-
2、1,1,3},下列对应关系中,是从A到B的函数的有。(1)f:y=x(2)f:(3)f:y=2x(4)f:y=2x-15.下列各组中的两个函数是同一函数的有。(1);(2);(3)(4)(5)6.已知函数的图像过点(3,7),则此函数的最小值为。7、集合A={0,1}到集合B={a,b,c}的映射个数为。8、方程,则。二、典型例题例1、(1)设,则的定义域为。(2)若函数的定义域是R,求实数a的取值范围7例2、求函数的值域(1)(2);(3);(4);(5);(6)(7)7例3、(1)已知是二次函数,若,求.(
3、2)已知,求.(3)已知满足,求例4、(1)作出函数的图象:(1)(2)(3)(4)(2)说明由函数的图像经过怎样的图像变换得到函数的图像.7例5、已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3)。(1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式;(2)若f(x)的最大值为正数,求a的取值范围.三、巩固练习1、若函数在上的最大值与最小值之差为2,则。2、已知为常数,函数在区间[0,3]上最大值为2,则=。3、已知实数,函数,若,则a的值为________4、若
4、函数的值域为R,则a的范围是5、用min{a,b,c}表示a,b,c三个数中的最小值,设(x0),则的最大值为6、定义在R上的函数f(x)满足f(x)=,则f(3)的值为77.已知函数,若互不相等,且,则的范围是。8.函数的零点有个。9、_。10、.若不等式对任意成立,求a的最小值11、已知y=f(x)的定义域为R上的奇函数,且x≥0时,(1)求y=f(x)的解析式(2)是否存在这样的正数m,n,当x∈[m,n]时,g(x)=f(x),且g(x)的值域为?若存在,求m,n的值;若不存在,请说明理由712、设a为
5、实数,设函数的最大值为g(a) (Ⅰ)设t=,求t的取值范围,并把f(x)表示为t的函数m(t)(Ⅱ)求g(a)(选做)7
此文档下载收益归作者所有