高考(文数)立体几何大题复习.doc

高考(文数)立体几何大题复习.doc

ID:50605029

大小:779.50 KB

页数:21页

时间:2020-03-12

高考(文数)立体几何大题复习.doc_第1页
高考(文数)立体几何大题复习.doc_第2页
高考(文数)立体几何大题复习.doc_第3页
高考(文数)立体几何大题复习.doc_第4页
高考(文数)立体几何大题复习.doc_第5页
资源描述:

《高考(文数)立体几何大题复习.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、19.(14分)(2013•潮州二模)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,BD∩AC=G.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥E﹣ADC的体积.解答:解:(1)证明:∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∴AE⊥BC.(2分)又∵BF⊥平面ACE,∴BF⊥AE,∵BC∩BF=B,∴AE⊥平面BCE(4分)(2)连接GF,∵BF⊥平面ACE,∴BF⊥CE∵BE=BC,∴F为EC的中点;∵矩形ABCD中,G为两对角线的交点且是两线段的中点,∴G

2、F∥AE,(7分)∵GF⊂平面BFD,AE⊄平面BFD,∴AE∥平面BFD.(8分)(3)∵三棱锥E﹣ADC的体积等于三棱锥E﹣ABC的体积∵VE﹣ABC==故棱锥E﹣ADC的体积为18.(14分)(2013•东莞二模)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB1∥平面BC1D;立体几何复习第21页共21页(2)若BC=3,求三棱锥D﹣BC1C的体积.解答:解:(1)证明:连接B1C,设B1C与BC1相交于O,连接OD,∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.∵

3、D为AC的中点,∴OD为△AB1C的中位线,∴OD∥B1A.OD⊂平BC1D,AB1⊄平面BC1D,∴AB1∥平面BC1D.(2)∵三棱柱ABC﹣A1B1C1,∴侧棱CC1∥AA1,又∵AA1底面ABC,∴侧棱CC1⊥面ABC,故CC1为三棱锥C1﹣BCD的高,A1A=CC1=2,∴.∴.18.(14分)(2013•佛山一模)如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=BD.(1)求证:CD⊥平面PAB;(2)求点D到平面PBC的距离.立体几何复习第21页共21页解答:解:(1)

4、∵AB为圆O的直径,∴AC⊥CB,∵Rt△ABC中,由,∴tan∠ABC==,∠ABC=30°,∵AB=4,3AD=DB,∴DB=3,,由余弦定理,得△BCD中,CD2=DB2+BC2﹣2DB•BCcos30°=3,∴CD2+DB2=12=BC2,可得CD⊥AO.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∵点P在圆O所在平面上的正投影为点D,即PD⊥平面ABC,又∵CD⊂平面ABC,∴PD⊥CD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∵PD∩AO=D得,∴CD⊥平面PAB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由(1)可知,PD=DB=3,且R

5、t△BCD中,,﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴.﹣﹣﹣﹣﹣﹣﹣﹣(10分)又∵,,,∴△PBC为等腰三角形,可得.﹣﹣﹣﹣﹣﹣﹣﹣(12分)设点D到平面PBC的距离为d,由VP﹣BDC=VD﹣PBC,得,解之得.﹣﹣﹣﹣﹣﹣﹣﹣(14分)18.(14分)(2013•广州二模)如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°.(1)求证:平面PBC丄平面PAC(2)已知PA=1,AB=2,当三棱锥P﹣ABC的体积最大时,求BC的长.立体几何复习第21页共21页解答:解:(1)证明:∵∠PAB=∠PAC=90°,∴PA⊥AB,PA⊥AC,∵AB∩AC

6、=A,∴PA⊥平面ABC,∵BC⊂平面ABC,∴BC⊥PA∵∠ACB=90°,∴BC⊥CA,又PA∩CA=A,∴BC⊥平面PAC,∵BC⊂平面PBC,∴平面PBC⊥平面PAC.(2)由(1)知:PA⊥平面ABC,BC⊥CA,设BC=x(0<x<2),AC===,VP﹣ABC=×S△ABC×PA=x=≤×=.当且仅当x=时,取“=”,故三棱锥P﹣ABC的体积最大为,此时BC=.立体几何复习第21页共21页18.(本小题满分14分)如图4,在四棱锥中,底面是平行四边形,,,平面,点为的中点.(1)求证:平面;(2)求证:;(3)若,求点到平面的距离.【解析】(1

7、)证明:连接,与相交于点,连接,∵是平行四边形,∴是的中点.∵为的中点,∴.∵平面,平面,∴平面.(2)证明:∵平面,面,∴.∵,,∴.∴.∴.∵,平面,面,∴平面.∵平面,∴.(3)解:取的中点,连接,则且.∵平面,,立体几何复习第21页共21页∴平面,.在Rt△中,,,∵,,∴.在Rt△中,.在△中,,为的中点,∴.在Rt△中,.在Rt△中,.∴,.设点面的距离为,∵,∴.即,解得.∴点到平面的距离为.立体几何复习第21页共21页17.(14分)(2013•惠州二模)正方体ABCD_A1B1C1D1,AA1=2,E为棱CC1的中点.(Ⅰ)求证:B1D1⊥

8、AE;(Ⅱ)求证:AC∥平面B1DE;(Ⅲ)求三棱锥

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。