计数原理与排列组合.doc

计数原理与排列组合.doc

ID:50582345

大小:96.12 KB

页数:6页

时间:2020-03-12

计数原理与排列组合.doc_第1页
计数原理与排列组合.doc_第2页
计数原理与排列组合.doc_第3页
计数原理与排列组合.doc_第4页
计数原理与排列组合.doc_第5页
资源描述:

《计数原理与排列组合.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、计数原理与排列组合计数原理一、知识导学1.分类计数原理:完成一件事n类办法,那么完成这件事共有N=++……+种不同的方法.2.分步计数原理:完成一件事分成n个步骤,那么完成这件事共有N=××…×种不同的方法.二、经典例题导讲[例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ()A.12种B.7种  C.24种D.49种分析:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种.∴应选D.[例3]三张卡片的正反面分别写有1和2,3和4,5和

2、6,若将三张卡片并列,可得到几个不同的三位数(6不能作9用).解:解法一 第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数.[例5]用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字不重复的三位奇数?(3)可以组成多少个数字不重复的小于1000的自然数?解

3、:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个. (3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个. (4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个四、典型习题导练1.将4个

4、不同的小球放入编号为1、2、3的三个不同的盒子中,其中每个盒子都不空的放法共有(  )A.种       B.种C.18种         D.36种2某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?排列与组合一、知识导学1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的全排列.3.排列数:从n个不同

5、元素中取出m(m≤n)个元素的所有排列的个数叫做从n个不同元素中取出m个元素的排列数.用符号表示.4.阶乘:正整数1到n的连乘积,叫做n的阶乘,用n!表示.规定:0!=15.组合:一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.6.组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数叫做从n个不同元素中取出m个元素的组合数.用符号表示.7.本节公式 (1)排列数公式                     (这里m、n∈,且m≤n)(2)组合数公式  (这

6、里m、n∈,且m≤n)(3)组合数的两个性质            规定:            二、疑难知识导析1.常见题型有:排队问题、数字问题、与几何有关的问题.解排列应用题时应注意以下几点:①认真审题,根据题意分析它属于什么数学问题,题目中的事件是什么,有无限制条件,通过怎样的程序完成这个事件,用什么计算方法.②弄清问题的限制条件,注意研究问题,确定特殊元素和特殊的位置.考虑问题的原则是特殊元素、特殊位置优先,必要时可通过试验、画图、小数字简化等手段帮助思考.解排列应用题的基本思路:①基本思路:直接法:即从条

7、件出发,直接考虑符合条件的排列数;间接法:即先不考虑限制条件,求出所有排列数,然后再从中减去不符合条件的排列数.②常用方法:特殊元素、特殊位置分析法,排除法(也称去杂法),对称分析法,捆绑法,插空档法,构造法等.4.对组合的理解:如果两个组合中的元素完全相同,那么不管它们顺序如何都是相同的组合.当两个组合中的元素不完全相同时(即使只有一个元素不同),就是不同的组合.三、经典例题导讲元素多于位置[例1]10个人走进只有6把不同椅子的屋子,若每把椅子必须且只能坐一人,共有多少种不同的坐法?分析:原问题抽象为从10个元素中

8、作取6个元素占据6个不同的位置.显然是从10个元素中任取6个元素的排列问题.从而,共有=151200种坐法.捆绑法和插入法的应用[例4]4名男生和3名女生并坐一排,分别回答下列问题:(1)男生必须排在一起的坐法有多少种?(2)女生互不相邻的坐法有多少种?(3)男生相邻、女生也相邻的坐法有多少种?(4)男女生相间的坐法有多少种?(5)女生顺序已定

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。