八上数学期末总复习各章知识点总结.doc

八上数学期末总复习各章知识点总结.doc

ID:50537583

大小:421.00 KB

页数:12页

时间:2020-03-10

八上数学期末总复习各章知识点总结.doc_第1页
八上数学期末总复习各章知识点总结.doc_第2页
八上数学期末总复习各章知识点总结.doc_第3页
八上数学期末总复习各章知识点总结.doc_第4页
八上数学期末总复习各章知识点总结.doc_第5页
资源描述:

《八上数学期末总复习各章知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、八上数学期末总复习各章知识点总结轴对称与轴对称图形知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形

2、是反映一个图形的特性。联系:①两部分都完全重合,都有对称轴,都有对称点。②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。lAB4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。6.怎样画轴对称图形:

3、画轴对称图形时,应先确定对称轴,再找出对称点。lABM线段、角的轴对称性知识点:1.线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。②线段的垂直平分线上的点到线段两端的距离相等。③到线段两端距离相等的点,在这条线段的垂直平分线上。结论:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。②角平分线上的点到角的两边距离相等。③到角的两边距离相等的点,在这个角的平分线上。结论:角的平分线是到角的两边距离相等的点的集合等腰三角形的轴对称性知

4、识点:1.等腰三角形的性质:①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;②等腰三角形的两个底角相等;(简称“等边对等角”)③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(简称“三线合一”)2.等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)②直角三角形斜边上的中线等于斜边上的一半。3.等边三角形:①等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。②等边三角形的性质:等边三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600。③等边三角形的判定

5、:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于600的等腰三角形是等边三角形。4.三角形的分类:斜三角形:三边都不相等的三角形。三角形只有两边相等的三角形。等腰三角形等边三角形等腰梯形的轴对称性知识点:1.等腰梯形的定义:①梯形的定义:一组对边平行,另一组对边不平行为梯形。梯形中,平行的一组对边称为底,不平行的一组对边称为腰。ADCB②等腰梯形的定义:两腰相等的梯形叫做等腰梯形。2.等腰梯形的性质:①等腰梯形是轴对称图形,是两底中点的连线所在的直线。②等腰梯形同一底上两底角相等。③等腰梯形的对角线相等。3

6、.等腰梯形的判定:③在同一底上的2个底角相等的梯形是等腰梯形。补充:对角线相等的梯形是等腰梯形,结论正确,但不能作为理由使用勾股定理、勾股定理的应用知识点:CBAcba1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。数学式子:∠C=9002、神秘的数组(勾股定理的逆定理):如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.数学式子:∠C=900满足a2+b2=c2三个数a、b、c叫做勾股数。平方根、立方根知识点:1、什么叫做平方根?如果一个数的平方等于9,这个数是几?±3是9的平方根;9的平方根是±3。一般地

7、,如果一个数的平方等于a,那么这个数叫做的a平方根,也称为二次方根。数学语言:如果,那么就叫做的平方根。4的平方根是;的平方根是。的平方根是0.81。如果,那么。2的平方根是?2、平方根的表示方法:一个正数的正的平方根,记作“”,正数的负的平方根记作“”。这两个平方根合起来记作“”,读作“正,负根号a”.表示,=。2的平方根是;如果,那么。3、平方根的概念:一个正数的平方根有2个,它们互为相反数;0只有1个平方根,它是0本身;负数没有平方根。求一个数的平方根的运算叫做开平方。4、算术平方根:正数有两个平方根,其中正数的正的平方根,叫的算术平方根

8、.例如,4的平方根是,2叫做4的算术平方根,记作=;2的平方根是,叫做2的算术平方根,记作。5、算术平方根的性质:⑴;中被开方数。⑵,6、什么叫做立方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。