欢迎来到天天文库
浏览记录
ID:50495585
大小:222.00 KB
页数:9页
时间:2020-03-09
《求解二元一次方程组教学设计雷秀萍.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第五章二元一次方程组2.求解二元一次方程组(第2课时)教学设计山丹二中雷秀萍一、学生起点分析学生的知识技能基础:在学习本节之前,学生已经掌握了有理数、合并同类项、去括号等法则,能熟练的进行简单的整式的加、减法运算,知道方程的解的意义,能熟练的求解一元一次方程,了解了二元一次方程以及解的意义、二元一次方程组及其解的意义,能通过代人消元法求解二元一次方程组.学生活动经验基础:在相关知识的学习过程中,学生已经经历了列整式、列一元一次方程并求解,列二元一次方程组解决了一些简单的现实问题,感受到了方程是刻画现实世界数量关系的有效模型,通过解一元一次方程和用代入消元法解二元一次方程
2、组获得了解二元一次方程的基本经验和基本技能;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析教科书基于学生对前面解一元一次方程和用代入消元法解二元一次方程组基础之上,提出了本课的具体学习任务:会用加减消元法解二元一次方程组,了解解二元一次方程组的“消元”思想,初步体现数学研究中“化未知为已知”的化归思想.《课程标准(2011年版)》把方程与方程组的重点放在解法和应用上,特别强调体会方程是刻画现实世界数量关系的有效模型,如何解方程与方程组是方程与方程组教学的主体和重点.对于二元一次方程组来讲
3、,强调“消元”的思想和方法,应是贯穿于始终的一条主线,通过“消元”,将二元一次方程转化为一元一次方程实现求解的目的,体现了化繁为简,以简驭繁的基本策略,对促进了学生理性思维的发展具有重要意义.通过第一课时的学习,学生已经能够解一般的二元一次方程组,但对于有些方程组用代人消元法解可能比较繁杂,用加减消元法要简单一些,同时加减消元法在学生将来的矩阵运算中有广泛的应用。因此这个课时就进一步学习二元一次方程组的加减消元法.加减消元法是解二元一次方程组的基本方法之一,它要求两个方程中必须有某一个未知数的系数的绝对值相等(或利用等式的基本性质在方程两边同时乘以一个适当的不为0的数或
4、式,使两个方程中某一个未知数的系数的绝对值相等),然后利用等式的基本性质在方程两边同时相加或相减消元.为此,本节课的教学目标是:(1)会用加减消元法解二元一次方程组.(2)进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.(3)选择恰当的方法解二元一次方程组,培养学生的观察、分析能力.本节课的教学重点是:用加减消元法解二元一次方程组.本节课的教学难点是:在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.[来源:学科网ZXXK]三、教学过程设计本节课设计了六个教学环节:第一环节:预习导学(感知);第二环节:新知探究(理解)
5、;第三环节:轻松尝试(运用);第四环节:感悟思考(升华);第五环节:当堂检测(达标);第六环节:拓展延伸(提高)。第七环节:布置作业第一环节:预习导学(感知)1、解二元一次方程组的基本思路是(),即化()元为()元。2、用代入法解方程组的步骤是(变形)、()、()、(写解)。3、解二元一次方程组:解法1:(用小明的思路)解法2:(用小亮的思路)解法3:(用小丽的思路)按小丽的思路,你能消去一个未知数吗?学生在课前预习阶段完成1—3题。第3题怎样解下面的二元一次方程组呢?(可以让用不同方法解题的学生将他们的方法板演在黑板上,然后进行评析,并为加减消元法的出现铺路.)学生可
6、能的解答方案1:解1:把②变形,得:,③把③代入①,得:,解得:.把代入②,得:.所以方程组的解为.学生可能的解答方案2:解2:由②得,③把当做整体将③代入①,得:,解得:.把代入③,得:.所以方程组的解为.(此种解法体现了整体的思想)学生可能的解答方案3:(观察发现:两个方程中一个含有,而另一个是,两者互为相反数)解3:根据等式的基本性质方程①+方程②得:,解得:,把代入①,解得:,所以方程组的解为.通过上面的练习发现,同学们对代入消元法都掌握得很好了,基本上都能够按要求解出二元一次方程组的解(如方案1),可是也有同学发现(如方案2)的解法比(方案1)的解法简单,他是
7、将5y作为一个整体代入消元,依然体现了代入法的核心是代入“消元”,通过“消元”,使“二元”转化为“一元”,从而使问题得以解决,那么(方案3)的解法又如何?它达到“消元”的目的了吗?(留些时间给学生观察,注意引导学生观察方程中某一未知数的系数,如x的系数或y的系数)引导学生发现方程①和②中的和互为相反数,根据相反数的和为零(方案3)将方程①和②的左右两边相加,然后根据等式的基本性质消去了未知数y,得到了一个关于x的一元一次方程,从而实现了化“二元”为“一元”的目的.这就是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法.目
此文档下载收益归作者所有