资源描述:
《数学空间几何体的结构.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.1空间几何体的结构(1)第一章空间几何体在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。空间几何体如果我们只考虑物体的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。请观察下图中的物体我要问这些图片中的物体具有什么样的几何结构特征?你能对它们进行分类吗?我来答上图中的物体大体可分为两大类.其中(2),(5),(7),(9),(13),(14),(15),(16)具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1),(3),(4),(6),(8),(10)
2、,(11),(12)具有相同的特点:组成它们的面不全是平面图形.想一想?我们应该给上述两大类几何体取个什么名字才好呢?定义:1.由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。2.由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴。这节可我们先来探究棱柱,棱锥,棱台的结构特征1.棱柱的结构特征请仔细观察下列几何体,说说它们的共同特点.定义:有两个面互相平行,其余各面都是四边形,并且每相
3、邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱。棱柱的有关概念DABCEFF′A′E′D′B′C′侧面顶点底面侧棱棱柱中,两个互相平行的面叫棱柱的底面(简称底),其余各面叫棱柱的侧面,相邻侧面的公共边叫侧棱,侧面与底面的公共顶点叫棱柱的顶点。(1)底面互相平行.(2)侧面都是平行四边形.(3)侧棱平行且相等.棱柱的分类:棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……三棱柱四棱柱五棱柱棱柱的表示用底面各顶点的字母表示棱柱,如图所示的六棱柱表示为:“棱柱ABCDEF—A'B
4、'C'D'E'F'”DABCEFF′A′E′D′B′C′理解棱柱探究1:一个长方体,能作为棱柱底面的有几对?答:长方体有三对平行平面;这三对都可以作为棱柱的底面.探究2:观察右边的棱柱,共有多少对平行平面?能作为棱柱的底面的有几对?答:四对平行平面;只有一对可以作为棱柱的底面.棱柱的任何两个平行平面都可以作为棱柱的底面吗?答:不是.2.棱锥的结构特征请仔细观察下列几何体,说说它们的共同特点.定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。SABCD顶点侧面侧棱底面棱锥中,这个多边形面叫做棱
5、锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱。棱锥的有关概念棱锥的表示用表示顶点和底面各顶点的字母表示,如图所示的棱锥表示为:“棱锥S—ABCD”棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、……ABCDS用一个平行于棱锥底面的平面去截棱锥,得到怎样的两个几何体?想一想:ABCDA’B’C’D’用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.3.棱台的结构特征棱台的有关概念:棱台的分类:由三棱锥、四棱锥、五棱锥…截得的棱台,分别
6、叫做三棱台,四棱台,五棱台…棱台的表示方法:“棱台ABCD—A'B'C'D'”棱台的特点:两个底面是相似多边形,侧面都是梯形;侧棱延长后交于一点。练习:下列几何体是不是棱台,为什么?(1)(2)思考:棱柱、棱锥和棱台都是多面体,当底面发生变化时,它们能否互相转化?上底扩大上底缩小有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?答:不一定是.如图所示的几何体,不是棱柱.探究3:长方体按如图截去一角后所得的两部分还是棱柱吗?探究4:ABCDA’B’C’D’EFGHF’E’H’G’答:都是棱柱.。知识小结简单几何体的结构特征柱体
7、锥体台体棱柱棱锥棱台作业:1、将你制作的棱柱、棱锥和棱台的底面、侧面、侧棱、顶点标记出来,并在图形上注明它的类别和表示方法2、总结一下讨论棱柱、棱锥、棱台结构特征的方法